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Fall 2011 – Time Series Project

Introduction


This report would model the mid-year population number in Hong Kong for the years 1961-2009[1].  We are going to fit AR(2), ARI(1,1) and ARI(2,1) respectively to the time series and recommend one of the models.  For the selected model, we would proceed with residual analysis and forecasting, in order to check whether the model selected is appropriate.
Model Specification & Fitting

There is an obvious upward trend in the population and we have good reason to believe that trend would persist after 2009.  Therefore, an AR(1) fitted to this time series would not be stationary as |Φ| would be > 1.  The trend looks like (worksheet “original data”):
[image: image1.emf]Hong Kong Population (in thousands people)
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To aid us in selecting a tentative model, we can calculate the sample autocorrelation function (“ACF”) of the original data and plot the correlogram (worksheet “original data”):
[image: image2.emf]Hong Kong Population Correlogram
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The damping sine ware suggests an AR(2) model.
AR(2) (worksheet “AR(2)”)

An AR(2) model is Yt = Φ1Yt-1 + Φ2Yt-2 + θ0 + et .  After estimating the Φk and θ0 parameters, we have Yt = 1.299Yt-1 – 0.308Yt-2 + 102.873 + et.  We can also check that the following stationary conditions for AR(2) are met.
Φ1 + Φ2 = 0.9907 < 1

Φ2 - Φ1 = -1.6077 < 1

|Φ2| = 0.3085 < 1


As there is an upward trend in the population number, we would also consider fitting AR(1) and AR(2) to first difference of log-transformed population, i.e. ARI(1,1) and ARI(1,2), before proceeding with the AR(2) model.
ARI(1,1) of log-transformed population (worksheet “first difference”)

To begin with, we first take natural log of the time series (column C), with a view to make the increase in population linear.  We then take first difference of the logs (column D) which become the object time series to be fitted with AR(1) or AR(2).  Similar to what we do in the AR(2) section, we compute sample ACF (column F) and plot the correlogram:
[image: image3.emf]Correlogram of first difference of log-population
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As we see from the above graph, sample ACF decreases exponentially at the first 10 lags (except at lag 5 and 8) which would suggest an AR(1) model.  Although the increase at lag 5 and 8 are not expected under an AR(1) model, their value ρ5 = 0.187 (cell F10) and ρ8 = 0.062 (cell F13) are well below the dotted line [Note: please enlarge the document if you have problem seeing the red dotted line], which means it is not significantly different from zero (i.e. the increase in correlation could happen by chance).  On the other hand, the autocorrelation at lag 17 is suspicious and worth further investigation should we select an AR(1) model.

Beside an autoregressive model, we may also consider a moving average model of order 2, MA(2), because of the significance at lag 1 and 2.  The partial autocorrelation function (“PACF”) could help us to choose between an AR model and a MA model and to determine the order of the AR model.  The PACF is computed at column G and the PACF corelogram is as follow:
[image: image4.emf]PACF of first difference of log population
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As we can see, the only significant PACF are at lag 1 and 18.  As the PACF dies off after lag 1 (we would ignore the correlation at lag 18 as it is only slightly significant and the correlation at such a long lag alone is not of particular interest), it would suggest an autoregressive model with order 1.

We now estimate the Φ and θ0 parameters for our ARI(1,1) model:
▽Yt = Φ▽Yt-1 + θ0 + et

The estimated values are at worksheet “ARI(1,1”), then our model is:
▽Yt = 0.4864▽Yt-1 + 0.007806 + et
which is stationary as |Φ| < 1.  The mean of {▽Yt}, μ, is θ0/(1 - Φ) = 0.152. 

After that, we obtain the predicted values of {▽Yt} (column K), which are then transformed back into population number (column M).  We can then compute the residual sum of squares (column V), total sum of squares (column W) and R2 (column X).  We see that R2 for the our fitted ARI(1,1) model is 0.9980, which indicates that the ARI(1,1) predictions are almost perfect.

Back to our AR(2) model fitted to original data, the R2 is 0.9982.  Therefore, the addition of an extra parameter only barely improves, if any, our prediction.  Under the principle of parsimony, the ARI(1,1) model prevails.
ARI(2,1) of log-transformed population


One may also consider fitting an ARI(2,1) model because of the seemingly U-shaped correlogram of first differenced log-values on page 3.  The result is at worksheet “ARI(2,1)”, from which we notice that the Φ2 with a p-value of 0.2254 (cell L25) is not significantly different from zero at usual significance level such as 10%.  Therefore, the extra Φ2 parameter is considered unnecessary and we eliminate the choice of ARI(2,1) model.
Residual Analysis of the ARI(1,1) model


Residuals of a properly fitted model should follow a normal distribution with zero mean (i.e. residuals are white noise).  We first examine the normality of the residuals by looking at the QQ plot:

[image: image5.emf]QQ plot of estimation residual
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A first look of the QQ plot seems to suggest that the residual is not normally distributed as the quantiles do not form a straight line.  So we continue to look at the Ljung-Box Q statistics (for 48 residuals, we have ignored the first 5 residuals ACF and used K = 15).  The Ljung-Box Q statistics = 10.51 (cell U8) is smaller than the critical value of 21.06 (at 10% significance level with 15 – 1 = 14 degree of freedom).  Therefore, we do not have statistically significance evidence to reject the hypothesis that the residuals are normally distributed.  As a result, we believe that the residuals are white noise and that the ARI(1,1) model might be appropriate.
Forecasting (worksheet “first difference”)

While the high R2 value confirms the goodness-of-fit of our model for in-period predictions, we are also interested in testing its ability to forecast out-of-period values.  We have reserved the population in 2010 and 2011 for forecasting.  Using our ARI(1,1) model, the forecasted population in 2010 and 2011 are as follow:

	
	Actual
	Forecast

	
	Population
	(log) First Difference
	Population
	(log) First Difference

	2010
	7,067.8
	0.00911
	7,071.4
	0.00962

	2011
	7,108.1
	0.00569
	7,160.2
	0.01248



Variance of the one-period ahead forecast (first difference) is σe2 which is estimated to be 0.000089 (cell N56) and the 95% confidence interval is 0.00962 ± 1.96 x 0.009428 or (-0.008864, 0.02809), which includes the true value of 0.00911.  Variance of the two-period ahead forecast is (1 + Φ2)σe2 = 0.00011 and the 95% confidence interval is 0.01248 ± 1.96 x 0.01048 or (-0.008066, 0.03303), which also includes the true value of 0.00569.  Besides, the prediction error of the population number is also within 1% of the true value.  Therefore, we may conclude that the forecast is not unacceptable.
Special Consideration of autocorrelation at lag 17


As mentioned before, the significant autocorrelation at lag 17 requires our special attention.  If we look at the time series of population, it is not hard to discover that there were two sharp increases in year 1979 and 1996 respectively.  These two large expansions in population were 17 years apart, which causes the seemingly significant autocorrelation at lag 17.  Notwithstanding its significance, the autocorrelation at lag 17 is not associated with the other two significant autocorrelation at lag 1 and 2 and is not of particular interest to us, therefore it is disregarded.

However, we may note that the extraordinary population expansion in 1996 might be explained by the change of estimation approach.  The Census and Statistics Department has adopted the “Resident population” approach to estimate the population since 1996, whereas population before 1996 was estimated using the “Extended de facto” approach.

On the other hand, the extraordinary population expansion in 1979 was likely to be caused by the influx of (illegal) immigration from China[2] and Vietnam[3].  Rough estimation indicated that at least 100,000 immigrants from China entered Hong Kong in 1979, which was the main reason for the population expansion in 1979.
Conclusion


We have specified several models to fit the Hong Kong population, including AR(1), AR(2), ARI(1,1) and ARI(2,2).  After estimating the parameters for those models and comparing the R2, we have concluded that for modeling of the HK population, an ARI(1,1) model is superior to AR(1) (not stationary), AR(2) (principle of parsimony) and ARI(2,1) (Φ2 is not significantly different from zero, thus unnecessary).  We then continue to analyze the residuals of the selected ARI(1,1) model to ensure it is not inappropriately fitted.  After we have confirmed the selection of an ARI(1,1) model, we further test it by forecasting 1-period and 2-period ahead prediction.  Finally, we have discovered some probable reasons for the seemingly high autocorrelation at lag 17.
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