Fox Module 11: Statistical inference for simple linear regression
(The attached PDF file has better formatting.)

Regression Analysis Units of Measurement Practice problems

Know how ordinary least squares estimators, their standard errors, t-values, and p-values depend on the units of measurement and displacement from the origin. The principles are

- Multiplying the explanatory variable by k multiplies its β by $1 / k$.
- Multiplying the response variable by k multiplies all the β 's by k.
- Displacements of explanatory variables and the response variable from the origin changes α, not the β 's.

Intuition: β is in units of response variable / explanatory variable.
Illustration: Suppose claim frequency $=\alpha+\beta \times$ kilometers driven.

- α is in units of claim frequency.
- $\quad \beta$ is in units of claim frequency / kilometers driven

If we write the regression equation as claim frequency $=\alpha+(\beta / 1,000) \times$ meters driven.

- α is in units of claim frequency.
- $\quad \beta$ is in units of claim frequency / kilometers driven

Intuition: The B's depend on the deviations of the values from their means. A constant displacement of all the values doesn't affect the deviations. But a constant displacement of k raises the response variable Y by $k \times \beta$. α has the same displacement as the response variable, so it also rises by $k \times \beta$.

Elasticities, standardized coefficients, and t-values are unit-less.

- Elasticities are percentage changes: $\partial \mathrm{Y} / \mathrm{Y} / \partial \mathrm{X} / \mathrm{X}$.
- The change in a value has the same units as the value itself.
- If X is kilometers driven, then ∂X is also measured in kilometers driven.
- If Y is claim frequency, then $\partial \mathrm{Y}$ is also measured in claim frequency.

Standardized coefficients are $\beta \times \sigma_{\mathrm{x}} / \sigma_{\mathrm{y}}$.

- $\quad \beta$ is in units of Y / X.
- σ_{x} is in units of X.
- σ_{y}. Is in units of Y.
\Rightarrow The standardized coefficient is unit-less.

Measures of significance are not affected by units of measurement.

- The t-value is the ordinary least squares estimator divided by its standard deviation.
- The estimator and its standard deviation have the same units, so the t-value is unit-less.

The correlation between two random variables is unrelated to units of measurement, so the R^{2} statistic is also unit-less.
*Question 11.1: Goodness-of-fit and Units of Measurement
We use least squares regression with N pairs of observations $\left(X_{i}, Y_{i}\right)$ to estimate average annual claims cost in dollars per average miles driven each week, giving $Y=50+40 X+\epsilon$.

If we change the parameters to annual claims costs in Euros and kilometers driven per week, which of the following is true?
A. The R^{2} increases and the t value for kilometers driven increases
B. The R^{2} increases and the t value for kilometers driven decreases
C. The R^{2} decreases and the t value for kilometers driven increases
D. The R^{2} decreases and the t value for kilometers driven decreases
E. The R^{2} stays the same and the t value for kilometers driven stays the same

Answer 11.1: E

The R^{2} and the t statistic are both unit-less.

- The R^{2} is a proportion. If we double the units of Y, the TSS, RegSS, and RSS all increase by a factor of $2^{2}=4$. The R^{2} doesn't change.
- The t statistic is the ordinary least squares estimator divided by its standard deviation. If we double the units of X, both the estimator and its standard deviation decrease by 50\%.
*Question 11.2: Miles Driven and Annual Claim Costs
We use least squares regression with N pairs of observations $\left(X_{i}, Y_{i}\right)$ to estimate average annual claims cost in dollars per average miles driven per day, giving $Y=50+40 X+\epsilon$. For instance, a policyholder who drives an average of 25 miles a day has average claim costs of $50+40 \times 25=1,050$ dollars a year.

If we change the parameters to annual claims costs in Euros and kilometers driven a day, what is the revised regression equation? For this problem, assume $€ 1.00=\$ 1.25$ and 1 kilometer $=5 / 8$ mile (five eighths of a mile).
A. $Y=40+40 X+\epsilon$
B. $Y=40+20 X+\epsilon$
C. $Y=40+64 X+\epsilon$
D. $Y=62.5+25 X+\epsilon$
E. $Y=62.5+64 X+\epsilon$

The estimate of β is the covariance $\rho(x, y)$ divided by the variance of X.

- Using euros multiplies each Y value by $1.00 / 1.25=0.80$.
- Using kilometer multiplies each X value by $8 / 5=1.60$.

Illustration: $\$ 10.00=10 \times 0.80=€ 8.00$, and 10 miles $=10 \times 1.60=16$ kilometers.
Multiplying the Y values by 0.80 and the X values by 1.60

- Multiplies the covariance by $0.80 \times 1.60=1.280$
- Multiplies the variance of X by $1.60^{2}=2.560$

This multiplies β by $1.280 / 2.560=0.500$.
α is not affected by the units of X, since the product $\beta \times X$ is not affected by the units of X. But α varies directly with the units of Y : if Y is multiplied by $0.80, \alpha$ is multiplied by 0.80 .

Jacob: Is the product $\beta \times X$ unit-less?
Rachel: No; the product is in the units of Y .
We can check our result numerically:

- Before the change, if $X=0$ miles, $Y=\$ 50$. Now $X=0$ gives $Y=€ 40$, so α is 40 .
- Before the change, if $X=5$ miles, $Y=\$ 250$. Now $X=8$ kilometers gives $Y=\$ 250 \times 0.8$ $=€ 200$. Since $\alpha=40, \beta$ is $(200-40) / 8=20$.

*Question 11.3: Displacement

We regress Y on X with a two-variable regression model $Y_{i}=\alpha+\beta \times X_{i}+\varepsilon_{i}$

- X is the number of hours studied as a deviation from its mean.
- Y is the exam score as a deviation from its mean.

We change the values of X and Y to

- X is the actual number of hours studied (mean $=80$ hours)
- Y is the actual exam score (mean score $=80$)

Which of the following is true?
A. The R^{2} increases and the adjusted R^{2} increases
B. The R^{2} increases and the adjusted R^{2} stays the same
C. The R^{2} decreases and the adjusted R^{2} increases
D. The R^{2} decreases and the adjusted R^{2} stays the same
E. The R^{2} stays the same and the adjusted R^{2} stays the same
Answer 11.3: E
The displacement of X and Y does not affect the correlation between the random variables, so it does not affect the R^{2} or the adjusted R^{2}.

*Question 11.4: Displacement

We regress Y on X with a two-variable regression model $Y_{i}=\alpha+\beta \times X_{i}+\varepsilon_{i}$ the following is true?
A. If we double each X value and decrease each Y value by $1, \alpha$ increases.
B. If we double each X value but don't change the Y values, α decreases.
C. If we double each X value and increase each Y value by $1, \alpha$ decreases.
D. If we double each X value and increase each Y value by $1, \alpha$ increases.
E. If we double each X value and decrease each Y value by $1, \alpha$ stays the same.

Answer 11.4: D

- Doubling each X value reduces β by 50% but does not change α.
- Increasing each Y value by 1 increases α by 1 but does not change β.
*Question 11.5: Standardized Coefficients and Elasticities
We regress the average auto insurance loss costs in dollars (the Y dependent variable) on the number of hours the auto is driven each week (the X independent variable). We estimate the ordinary least squares estimator $\hat{\beta}$, the standardized coefficie $\hat{\beta} \quad$ *, and the elasticity η.

If we use Euros for the loss costs instead of dollars, which of the following is true? Assume that one Euro is 1.25 dollars.
A. $\hat{\beta}$ increase $\hat{\beta} \quad$ * and η stay the same.
B. $\hat{\beta}$ decrease $\hat{\beta} \quad$ * and η stay the same.
C. $\hat{\beta}$ ar $\hat{\beta} \quad$ * stay the same; and η increases.
D. $\hat{\beta}$ ar $\hat{\beta} \quad$ * stay the same; and η decreases.
E. $\hat{\beta}$ and η stay the same, $\operatorname{ar} \hat{\beta} \quad$ * increases.

Answer 11.5: B
If an hour of driving each week increases loss costs by $\$ 10$, it increases loss costs by $€ 8$, so β decreases.

The standardized coefficient and elasticity are unit-less, so they are not affected by a change in the units of measurement.

