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Time Series Project
Introduction
This project will attempt to fit an ARIMA model to the scores achieved by a schizophrenic patient on a daily test of perceptual speed. The data used in the project was obtained from the Time Series Data Library at www.robjhyndman.com/TSDL/health. The scores were recorded over one hundred and twenty consecutive days. The observed patient was given a powerful tranquilizer starting on the 61st day, which was expected to lower his perceptual speed. 
To separate the effect of the drug, the data was divided into two groups of sixty consecutive observations. As can be seen from comparing cells H13 in Data1 and Data2 tabs of the attached spreadsheet, the average score achieved by the patient was significantly lower in the second set of observations. Moreover, the mean of the first differences in days 61-120 has a reverse sign from the same mean obtained from the first 60 observations. This signifies a change in trend which could be attributed to the effect of the administered drug. 
Exhibit 1 below summarizes the score data obtained on days 61 -120.
[image: image1.png]Exhibit 1. Perceptual Speed Score
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Model Specification and Analysis
Before proceeding to look for an appropriate ARIMA model for this time series, we will use the Box-Pierce Q statistic to check whether the time series is a white noise process. We will also use the statistic on the first differences of observations to check if the time series might be a random walk. As can be seen from columns G and Q in the BPQ tab of the spreadsheet, the time series is neither a random walk nor a white noise. All the values in column G are significantly higher than the critical Chi-squared values at a 10% significance level, enabling us to reject the null hypothesis that the time series is a white noise. The values in column Q are higher than the critical values up until the sum of the first 26 terms. Since we only have 59 observations for the first differences of the data, we use the sum of the first 23 terms and compare to the Chi-squared distribution with 22 degrees of freedom. We find 33.111 > 30.813, and therefore reject the null hypothesis that the first differences of the original series form a white noise process. This in turn implies that our original data is not a random walk. 
Now that we have established that the time series is not a white noise process or a random walk, we will try attempt to fit an AR(1), AR(2), ARI(1,1) and an ARI(2,1) models to this data. In each case, we will leave out the last four observations when fitting the parameters to be able to use them for forecasts.
Exhibit 2 shows sample autocorrelations of the original data. The red dashed lines were plotted at [image: image3.png]+2/\n=+2/160 & +0.2582



 to show critical values that can be used for testing whether or not the autocorrelation coefficients are significantly different from zero. These values are based on the approximate large standard error for a white noise process.
Judging by the shape of the sample autocorrelation function, the given time series could be modeled with an autoregressive process. The autocorrelations at lags 1 through 9 are the only ones that seem significant. We would not expect an increase in the autocorrelation at lags 4 and 6 under an AR(1) model; however, keeping in mind that the patient’s score on the perceptual speed test could be influenced by a number of external forces, we can hardly expect the process to be modeled perfectly with any ARIMA process. We will start with an AR(1) model, and then check if the AR(2), ARI(1,1) or an ARI(2,1) model might be more appropriate.

[image: image4.png]Exhibit 2. Correlogram of the Original Data
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AR(1)

Below are the results obtained from fitting an AR(1) process to the perceptual speed scores times series using the Excel  regression add-in (see tab AR(1) of the spreadsheet).
	Regression Statistics
	 

	Multiple R
	0.633

	R Square
	0.401

	Adjusted R Square
	0.390

	Standard Error
	10.135

	Observations
	55


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept = θ0
	15.633
	4.483
	3.487
	0.001

	X1
	0.613
	0.103
	5.958
	0.000


The resulting equation is
[image: image6.png]Y, =15.633+0.613Y, , +e,




 
which is stationary since [image: image8.png]l¢y| = 0613 < 1



.
 The Durbin-Watson statistic, used to test for presence of autocorrelation in the residuals, is 2.466 in this case. We know that this statistic assumes values between 0 and 4 and has to be equal to 2 to confirm no serial correlation. The value of 2.466 seems significantly different from 2 to be able to say with certainty that there is no autocorrelation present in the residuals. The AR(1) process might be inappropriate for this dataset. However, the Box-Pierce Q statistic indicates that the residuals form a white noise process. The sum of the first  [image: image10.png]


 terms is lower than the critical Chi-squared value at a 10% level of significance with  [image: image12.png]


 degrees of freedom for all   [image: image14.png]K=>9



 (see cells K87:K137 and the adjacent cells in column L). 
AR(2)

The results of fitting the data to an AR(2) process are displayed below (see spreadsheet tab AR(2)).
	Regression Statistics
	 

	Multiple R
	0.666

	R Square
	0.443

	Adjusted R Square
	0.421

	Standard Error
	9.376

	Observations
	54


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept = θ0
	12.273
	4.609
	2.663
	0.010

	X1
	0.346
	0.128
	2.710
	0.009

	X2
	0.337
	0.124
	2.719
	0.009


The equation we get with this model is

[image: image16.png]Y, =12.273+0.346Y,_, +0.337Y,_, +e,




 

We can check that the stationarity conditions for an AR(2) model are met:

[image: image17.png]¢, + ¢, = 0.683 < 1




[image: image18.png]¢, — ¢, = —0.009 <1




[image: image19.png]l¢,1 =0337 <1




Here, the Durbin-Watson statistic is 1.989, which is very close to 2 and we can reject the null hypothesis that the residuals are autocorrelated. The Box-Pierce Q statistic confirms that the residuals form a white noise process. Here, as in the case of AR(1) process, the values for any sum of terms are lower than the Chi-Squared critical values with corresponding degrees of freedom. We cannot reject the null hypothesis that the residuals are a white noise process. Moreover, the Adjusted R2 = 0.421 is higher than 0.390 that what we got with AR(1). Considering all of the above, it seems that the AR(2) process is preferable to AR(1) in this case.
ARI(1,1) and ARI(2,1)

Using regression add-in to fit an ARI(1,1) and an ARI(2,1) processes produces the following results:
ARI(1,1):
	Regression Statistics
	 

	Multiple R
	0.481

	R Square
	0.232

	Adjusted R Square
	0.217

	Standard Error
	10.052

	Observations
	54


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept = θ0
	-0.842
	1.370
	-0.614
	0.542

	X1
	-0.483
	0.122
	-3.960
	0.000


The resulting first difference equation is
[image: image20.png]VY, = —0.842 —0.483VY,_, te,




This is a stationary process since [image: image22.png]l¢y| = 0483 < 1



. The Durbin-Watson statistic for this process is 2.018, which is close to 2, and we can conclude that there is no serial correlation present. The Box-Pierce statistic indicates that the residuals form a white noise process. 

ARI(2,1):
	Regression Statistics
	 

	Multiple R
	0.478

	R Square
	0.229

	Adjusted R Square
	0.198

	Standard Error
	10.189

	Observations
	53


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept = θ0
	-0.759
	1.408
	-0.539
	0.592

	X1
	-0.502
	0.142
	-3.549
	0.001

	X2
	-0.057
	0.141
	-0.404
	0.688


The first difference equation we get from this is 

[image: image23.png]VY, = —0.759 —0.502VY,_, —0.057VY,_, + e,




This process is also stationary since it meets all the stationarity conditions mentioned when discussing the AR(2) model. The Durbin-Watson statistic obtained from this process is 1.813, which is not as close to 2 as we would like. Using the Box-Pierce statistic, we cannot say that the residuals do not form a white noise process.

Comparing the ARI(1,1) and ARI(2,1) processes, the following comes to mind. First, the coefficient in front of [image: image25.png]


 is very close to zero and does not appear to be statistically significant. Additionally, the Adjusted R2 is higher for ARI(1,1) process. It does not seem that adding [image: image27.png]


 improves the model. 
We are left with two models to choose from, AR(2) and ARI(1,1). Out of these two, the second order autoregressive process seems to fit the data better. It has a higher Adjusted R2, and its Durbin-Watson statistic is closer to 2. I believe that out of the four models discussed the AR(2) process provides the best fit for the time series in question.
Exhibit 3 shows the graph of the values fitted using the AR(2) model together with the observed values. 
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Forecasting

Now that we have chosen the AR(2) model for in-period predictions, the next step is to test its ability for forecast out-of-period values. Recall that the last four values of the times series where reserved for forecasting. 
The table below displays the actual and forecasted scores for the four days that were not included in the model fitting process. It also shows 95% prediction limits for the forecast, which were calculated using the formula

[image: image29.png]Var(e.(D) = 0% (1 + ¥ + 93+ +¥,)




	Day
	Observed values
	Forecasted values
	 95% Prediction Limits

	
	
	
	Lower
	Upper

	55
	Yt-1
	34
	Yt-1
	34
	34
	34

	56
	Yt
	43
	Yt
	43
	43
	43

	57
	Yt+1
	38
	Yt(1)
	38.59
	20.213
	56.968

	58
	Yt+2
	33
	Yt(2)
	40.10
	20.652
	59.542

	59
	Yt+3
	28
	Yt(3)
	39.13
	17.957
	60.310

	60
	Yt+4
	35
	Yt(4)
	39.31
	17.539
	61.075


Since we are only forecasting up to lead time  [image: image31.png]


, we only need to derive  [image: image33.png]Yy, 5,5



. We calculate these parameters using the recursive relationships for the AR(2) model [image: image35.png]


-coefficients:
[image: image36.png]



[image: image37.png]Y2 =1y + P2 = 0.456




[image: image38.png]Y3 =12+ P2y = 0.274




The detailed calculations can be found on the Forecast tab of the spreadsheet.
Exhibit 4 displays the actual values for the entire time series together with the forecasted values and prediction limits.
[image: image39.png]Exhibit 4. Observed and Forecasted Values and Prediction Limits
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As can be seen from both the table and the chart, the forecast is not very accurate for lead times [image: image41.png]I>1



. Moreover, since the model has a relatively large error variance, the forecast limits are rather far from the fitted trend forecast. Even though the actual values are contained within prediction limits, the limits wide and there is a high degree of uncertainty in the forecast.
Conclusions
The purpose of this project was to fit an ARIMA model to the scores achieved by a schizophrenic patient on a daily test of perceptual speed. After comparing AR(1), AR(2), ARI(1,1) and ARI(2,1) models, it was established that the AR(2) model provided a better fit for the given data. However, even this model did not model the time series behavior very accurately. As mentioned earlier, it would be hard to expect an ARIMA process to provide a perfect fit for this dataset, since there could be a number of outside factors affecting the patient’s daily perceptual test score. It is also possible that a different kind of model, perhaps one with a higher order autoregressive component or one with a moving average component, would be better able to model the data. 
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