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Introduction
I was born in the Midwest, in Indianapolis, IN. For the time series project, I was interested in analyzing temperatures in this region to see how to best model this time series. This project focuses on finding the best model to fit high temperature data using time series analysis.
Data
Data for this analysis was obtained from the NEAS file from station #123513. This is a weather station located in Putnam County, Greencastle, IN. I chose this area because my father was born and raised in Greencastle, IN.
The information available from this station is from 4/1/1948-12/31/2005. There were a few data points that were unavailable. Most of those points were filled in using linear interpolation. Data from the entire month of August, 1988 was unavailable and that section was deleted instead of trying to interpolate an entire month of data. 
De-seasonalize
Time series data for daily temperatures display very apparent seasonal trends. The seasonality of temperatures is based on the day of the year, and is not usually dependent on temperatures on the same day in previous years. To properly analyze the time series trend of temperatures, it is important to first de-seasonalize the data. This allows more appropriate comparisons for daily temperatures compared to the average temperatures throughout the time period.
To de-seasonalize the data, the average temperature for the same day in all years of available data is used. For example, July 1st temperatures for all years from 1948-2005 were averaged together to determine what the seasonally adjusted temperature should be for that day. The graph below shows the actual data for high temperatures from the Greencastle, IN station compared to the seasonally adjusted temperatures.
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As this graph shows, the actual temperatures can vary by a significant amount from day to day. The seasonally adjusted temperatures are more stable as it uses average temperatures for each day over a 58 year period. 

Seasonally adjusting temperatures creates a much smoother trend curve, but the curve is still jagged. To create a further smoothed curve, moving averages of temperatures around the day being used are calculated. Several moving averages were used, and results for 21, 31, and 45-day graphs are shown below.
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The 21-day moving average of seasonally adjusted temperatures is still quite jagged. This led to increasing the width of the average around these temperatures.
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The 31-day moving average has a much smoother trend than the 21-day graph. However, it is still jagged which led to further increasing the width of the moving average.
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The 45-day moving average is even smoother than the 31-day moving average. The peak and low point of the graph is continuing to flatten out. This will lead to under-stated temperatures in July and August, but over-stated temperatures in January and February. A 61-day moving average was looked into, but it flattened the peak and low point much more without making the graph significantly smoother. Weighted averages for a 31-day moving average were also analyzed. This did not increase the smoothness of the data more than the 45-day moving average, which leads to the final conclusion that a 45-day moving average provided enough smoothing ability to use for the analysis.
Time Series
The seasonally adjusted, 45-day moving average data is compared to actual data to measure the residuals of the time series. The average of these residuals is 0.0019, which was far enough from zero to warrant normalizing the temperatures back to a mean residual of zero. This was done by subtracting the average residual from each individual calculated residual. This leads to a much smaller residual that is very close to zero. A graph of these normalized residuals is shown below for the data from 1948-2005.
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This graph shows that this time series is not a white noise process. This can be seen by the stretches of time where the residual is positive, followed by stretches of negative residuals. This graph also shows that the process is not a random walk since there are not long periods of time away from the mean. This process appears to show some mean reversion, which would not be present in a random walk process.
To analyze the proper process to use for this time series, the autocorrelations for various lags are calculated. The slow decline of the autocorrelations to zero indicates that this may not be a stationary process (it isn’t until lag 101 that the autocorrelation becomes negative for the first time). To determine the source of this non-stationarity, the data is split into 3 different 7,000 day time periods along with looking at the total data. Splitting the data into subsets of time periods will show if there are trends in the temperature data that lead to different AR processes.
The autocorrelation at lag 1 and 2 are used to determine which autoregressive model may be appropriate. Using all of the available data, the autocorrelation at lag 1 = 0.6410 and at lag 2 = 0.3689. For an AR(1) model, the autoregressive parameter would equal the lag 1 autocorrelation. The lag 2 autocorrelation would then be 0.6410^2 = 0.4109. The difference from actual to expected is (0.3689 – 0.4109)/0.3689 = -11.39%. This is significantly far enough from expected to infer that this may be an AR(2) process. Looking at the subsets of data, the first set of 7,000 daily temperatures has autocorrelation of lag 1 = 0.6497 and of lag 2 = 0.3735. The difference between actual to expected for an AR(1) process is (0.3735-0.4221)/0.3735 = -13.01%. The second subset of 7,000 daily temperatures has autocorrelation of lag 1 = 0.6341 and of lag 2 = 0.3703. The difference from actual to expected for an AR(1) process from this data is (0.3703-0.4021)/0.3703 = -8.60%. The third subset of data has autocorrelation of lag 1 = 0.6387 and of lag 2 = 0.3613 with a difference from expected for an AR(1) process of (0.3613-0.4079)/0.3613 = -12.92%. All of these show that an AR(1) process is not appropriate for this time series, and that an AR(2) time series may be more appropriate. The similar autocorrelations at lags 1 and 2 for all subsets of data and the total data means that there don’t appear to be any temperature trends affecting the time series.
Results from using regression analysis to determine the autoregressive parameters for all data are shown below.
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Regression Statistics

Multiple R

0.64339

R Square

0.413951

Adjusted R Square

0.413895

Standard Error

7.702678

Observations

21061

ANOVA

df

SS

MS

F

Significance F

Regression

2

882501

441250.5

7437.067

0

Residual

21058

1249398

59.33125

Total

21060

2131899

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

5.6E-05

0.053076

0.001056

0.999158

-0.103978

0.10409

-0.103978

0.10409

X Variable 1

0.686806

0.006874

99.91879

0

0.673333

0.700279

0.673333

0.700279

X Variable 2

-0.071361

0.006874

-10.38181

3.45E-25

-0.084834

-0.057888

-0.084834

-0.057888


This shows the ø1 parameter estimate is 0.6868 and the ø2 parameter estimate is -0.0714. Using method of moment estimation, the parameter estimates are approximately the same.

The first difference of the time series was also calculated to test for the stationarity of the model. The autocorrelation of first differences for lag 1 = -0.1065 and for lag 2 = -.2020. This leads to negative estimates for both autoregressive parameters of the ARI(2,1) model which leads to rejecting this as an appropriate model. This also shows that first differences do not correct for the non-stationarity, strengthening the conclusion that this time series is not a random walk and that there are no trends present in the data. 

Significance Tests
Three separate significance tests were utilized to test the results of this model. The Durbin-Watson test uses the normalized residuals, while the Bartlett test and Box-Pierce use the autocorrelations at different lags to verify the results.
The Durbin-Watson test measures the change in residuals from one period over the squared residual. A value over 2 confirms the hypothesis that the process is white noise. The Durbin-Watson test for this data resulted in a statistic of 0.7179. This is far below the significance level of 2 which leads to the conclusion that we can reject the null hypothesis that this is a white noise process.

The Bartlett test verifies that the autocorrelations are normally distributed with a mean of zero and standard deviation of 1/√T, where T is the number of data points. We would expect this to equal 1/√21,062 = 0.0069. The autocorrelations from the temperature data have a mean of -0.00002 and standard deviation of 0.0099. These are not quite normally distributed, but not significantly different enough to reject the hypothesis that the autocorrelations are normally distributed.
The Box-Pierce test helps determine if the null hypothesis that the residuals are uncorrelated can be rejected. Several sample autocorrelations of sample size 25 were used from this time series to measure different Q statistics. The largest Q statistic was 155.3028 while the smallest was 0.0248. The test compares this statistic to the significance level for a chi-square distribution with (K-p-q) degrees of freedom. For this data, K is 25 since the sample sizes tested were 25. Since the time series was fitted to an AR(2) model, the Q statistic is measured against a chi-square distribution with 25-2-0 = 23 degrees of freedom. The differing Q statistics give different results, with the large Q = 155.3028 leading to a p-value of 0, meaning that the null hypothesis can be rejected. The low Q = 0.0248 leads to a p-value of 1 meaning that there is no evidence to reject the null hypothesis. The other samples give different results between the two listed. This test gives no significant answer to whether the model is a good fit, and so it is important to rely on the other significance tests in combination with the data.
Conclusion
Temperature data is inherently seasonal. To perform adequate analysis, this data must be de-seasonalized. This will allow comparison of daily temperatures to the average temperatures for that day. Even with de-seasonalized data, the daily temperatures still create a jagged curve. To smooth this curve for the data used in this analysis, a 45-day moving average was used. Comparing the sample autocorrelations at lag 1 and lag 2 leads to the fit of an AR(2) model for this time series. The autocorrelations also indicate that the model is non-stationary. Splitting the data into different time periods and analyzing those autocorrelations indicated no significant trends that would affect the stationarity of the model. Taking the first difference resulted in negative autoregressive parameters that did not account for the non-stationarity of the model. This leads to the conclusion that the fitted AR(2) model with autoregressive parameters ø1 = 0.6868 and the ø2  = -0.0714 may be appropriate. Significance testing showed that the process was not white noise and that an autoregressive model may be appropriate. The other significance tests gave no conclusive information on whether the autocorrelations were normally distributed or independent.
