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Time Series

Introduction

Time series analysis can be a very useful tool in actuarial work.  In this project I will show how it can be applied to cost data, specifically whiskey.  I will use monthly CPI-U cost data from the US Bureau of Labor Statistics.

The goal of this project will be to step through the process to develop a model for whiskey costs.  All of the supporting work is completed in the attached Excel Spreadsheet.

Data

The data was pulled for 1994 through November 2011 from the BLS’s website (www.bls.gov).  I used the seasonally adjusted set to avoid any additional needed adjustments to the data to remove seasonality.  The data and criteria are shown on the “raw data” tab.  A graph of the monthly prices is below.
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This graph has a clear upward trend, which indicates the series is not stationary.  To confirm this I plotted out a correlogram of the data, which is in the below graph.
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The shape of the correlogram confirms that the series is not stationary.  In order to proceed with the modeling, it is necessary to have a stationary series.  I will take first differences of the data to try to make the series stationary.  The two graphs below show the first differences and the correlogram of the differenced data.
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[image: image4.emf]Autocorrelogram--First Differences
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The new correlogram shows that the autocorrelation does decrease to around zero around at the higher lags.  This indicates that the series is stationary.  Bartlett’s test can also be performed to confirm that the series is stationary.  The calculated statistic is ±0.134 (1.96/√215 : 95% confidence interval and 215 observations).  Only 2.3% of the values fall outside of this range.  Since the majority of the values fall within the range, we can proceed with the now stationary series.
Modeling

 I will test 3 different autoregressive models on the stationary series using Excel’s regression add in—ARIMA(1,1,0), ARIMA(2,1,0), and ARIMA(3,1,0).  
ARIMA(1,1,0)

This only has one variable to regress on—the lagged first difference.  The regression equation and results are below:

Yt = α + β1Yt-1 + εt
where α is the intercept, β1 is the coefficient, and εt is the error term
[image: image5.emf]Regression Statistics

Multiple R 0.005      

R Square 0.000      

Adjusted R Square (0.005)     

Standard Error 0.745      

Observations 213


[image: image6.emf]CoefficientsStandard Error

Intercept 0.2608      0.0542              

X Variable 1 0.0049      0.0688              


ARIMA(2,1,0)

This model adds another lag term to regress on.  It is important to note that for each term added a degree of freedom is lost.

Yt = α + β1Yt-1 + β2Yt-2 + εt
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Multiple R 0.148      

R Square 0.022      

Adjusted R Square 0.013      

Standard Error 0.741      

Observations 212
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Intercept 0.3006      0.0570              

X Variable 1 0.0052      0.0684              

X Variable 2 (0.1487)     0.0687              


ARIMA(3,1,0)

This model adds another lag term to regress on.  

Yt = α + β1Yt-1 + β2Yt-2 + β3Yt-3 + εt
[image: image9.emf]Regression Statistics

Multiple R 0.219      

R Square 0.048      

Adjusted R Square 0.034      

Standard Error 0.734      

Observations 211
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Intercept 0.3501            0.0602              

X Variable 1 (0.0187)           0.0686              

X Variable 2 (0.1471)           0.0681              

X Variable 3 (0.1636)           0.0692              


Conclusion

To select the best model (of the 3 evaluated) I will compare the R2, Durbin-Watson statistic, and the Box Pierce Q statistic.
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ARIMA(1,1,0) 0.000   1.998                               16.289         49.513     

ARIMA(2,1,0) 0.022   2.048                               16.677         48.363     

ARIMA(3,1,0) 0.048   2.006                               17.157         47.212     


The Durbin-Watson statistic is close to 2 for all of the models, so that will not be a deciding factor.  A value of 2 is what is desired—it indicates that there is no serial correlation between the residuals.  All of the Box Pierce Q statistics are well below the critical χ2 value, which indicates that null hypothesis (that the residuals are a white noise process) can not be rejected.  I am picking the ARIMA(3,1,0) because its Durbin-Watson and Box Pierce Q statistics are good and it has the highest R2, although the R2 is low.
As a final check I converted the forecast first differences back into prices and plotted them on a graph with the original prices.  As the below graph shows, the model does appear to do a very good job at estimating the series.
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These are the key highlights of the project:

· Whiskey prices have had a steady upward trend since 1994.

· Taking first differences made the series stationary.  This was confirmed using a correlogram and Bartlett’s test.
· Three autoregressive models were created from the stationary series.  A model was chosen based on the R2, Durbin-Watson statistic, and the Box Pierce Q statistic.
· The Box Pierce Q statistic confirmed that the hypothesis that the residuals are a white noise process could not be rejected.

· The model chosen did produce reasonable results when it was compared to the original price data.
