xxxxx xx
VEE – Time Series Student Project – Fall 2011
Crude Oil Price
Introduction
Crude oil is very important and useful in various fields, and its price is always a hot topic in not only the investment area but also in everyone’s daily life. The goal of this project is to model the crude oil monthly price from January 2002 to December 2011, aiming to find an appropriate and simple time series process that can be used to predict future crude oil price. In this project, I will conduct research on the initial data, the first difference of the data, and the log first difference as well. After that, I will be discussing 3 different time series models using ARIMA techniques, including ARIMA(1,1,0), ARIMA(2,1,0) and ARIMA(3,1,0). All analysis will be done in excel with the regression added-in. I will attach the excel work file as well.
Data
The data used in this project can be found through the following link:

http://www.indexmundi.com/commodities/?commodity=crude-oil&months=120 
Analysis

The following chart shows the crude oil price of the past 120 months.
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Then I calculated the sample autocorrelations of the original crude oil prices for all lags, and plotted the chart as shown below. As we can see, the sample correlations did not decrease to 0 quickly. In fact, they went down fairly slowly and didn’t reach 0 until after lag 100. This tells us that the crude oil prices are highly auto-correlated, and also the price doesn’t follow a stationary process.  
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As a result, I then tested both the first difference and the log of the first difference of the original prices. The following charts showed the first difference values and autocorrelations:
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[image: image4.emf]Correlogram adjusted for DOF - 1st Difference
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As we can see, the first difference values indicate some autocorrelations. But the correlogram chart tells us a lot more: the autocorrelation starts at around 0.45 at lag 1, and then quickly approaches to 0 after 10 lags. This indicates that very likely we can fit an ARIMA process to the prices’ first difference, as the first difference is stationary. But before that, I also tested the log of the first difference to see whether we can have big improvement.
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[image: image6.emf]Correlogram adjusted for DOF - Ln(1st difference)
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The ln(1st difference) seems to have very similar shapes/patterns to the first difference charts in both the values and autocorrelations. For simplicity, I will use the first difference as the raw data for the next modeling process. Also, the autocorrelation chart shows that an AR model maybe a better fit then the MA model, so I will focus on that in the next section.
Modeling

Using regression function of the excel added-in, I have run 3 autoregressive models for the first difference of crude oil prices – ARIMA(1,1,0), ARIMA(2,1,0) and ARIMA(3,1,0). The regression analysis summary and the final models are shown as below:
· ARIMA(1,1,0): Y(t) = 0.3793 + 0.4488 * Y(t-1) + e(t)
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· ARIMA(2,1,0): Y(t) = 0.3071 + 0.3892 * Y(t-1) + 0.1316 * Y(t-2) + e(t)
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· ARIMA(3,1,0): Y(t) = 0.3553 + 0.4069 * Y(t-1) + 0.1876 * Y(t-2) – 0.1402 * Y(t-3)+ e(t)
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From the above, we can see that the multiple R value increases when we add the number of variables. However, the increment is only 1% to 2%, which indicates that the model hasn’t been improved a lot by adding more variables. Moreover, from the p-value for the coefficients, ARIMA(2,1,0) and ARIMA(3,1,0) both have statistically insignificant coefficients – this further shows that one variable should be good enough to model the first difference as others are not significantly different from 0. So I will recommend the ARIMA(1,1,0) model to be the best choice. The chart below also shows that there are not huge difference in the 3 models when fitting all of them to the actual data, which further supports my recommendation. 
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Conclusion

As discussed above, the ARIMA(1,1,0) is the best model to fit the crude oil prices for the past 120 months. The model is:
ARIMA(1,1,0): Y(t) = 0.3793 + 0.4488 * Y(t-1) + e(t)

Where Y(t) is the first difference between the crude oil price at time t and t-1. This model fits the actual data pretty well and I believe it is a good choice to be used to predict the future crude oil prices.
