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INTRODUCTION  
 

Burglary is defined as the felony of breaking and entering the house of another with the intent of 

committing a crime.  It is an offense against possession and habitation.  As a first-time home owner, in a 

neighborhood I am not all-too-familiar with, the idea of a possible burglary is unsettling, to say the least.  In 

2010, 467 burglaries occurred in Wisconsin for every 100,000 inhabitants.  Statistically, 0.467% is a small 

percentage, but a burglary could happen to anyone.   
 

This project uses historical data to build an appropriate ARIMA model that can be used to project future 

burglary rates in Wisconsin.  More specifically, the time series analysis uses annual burglary rates, per 

100,000 inhabitants, in the state of Wisconsin between 1960 and 2010.  A projection model is developed, 

and one-step-ahead forecasts are compared to actual data to determine if the model is reasonable. 

 

DATASET  
 

Historical data for the project was obtained from http://www.disastercenter.com/crime/wicrime.htm, a 

website maintained by The Disaster Center.  The annual burglary rates from 1960 to 2005 are shown below. 
 

  
 

Before an ARIMA model can be developed, the data needs to be tested for stationarity.  If the original 

series is not stationary, then transformations of the data (such as first and second differences) are observed 

and subsequently tested for stationarity. 

 

TEST OF STATIONARITY  
 

A process is considered to be stationary if its statistical parameters, such as mean and standard deviation, 

are constant over time.  By looking at the original series above, it is clear that the mean is not constant over 

time.  However, a more thorough investigation of determining stationarity is conducted by analyzing the 

process’ sample autocorrelation function.  The sample  autocorrelation function describes the correlation 

http://www.disastercenter.com/crime/wicrime.htm


between values of a process at different points in time.  It must be constant over time, with a zero mean, in 

order for the series to be considered stationary.  The graphical representation used to study the sample 

autocorrelations  is called a correlogram.   Following, is the correlogram of the original data set. 
 

 

First, notice that the sample autocorrelation decreases more linearly than exponentially, leading us to 

believe that this is an autoregressive process, as opposed to a moving average process.  Second, the dashed 

horizontal lines, plotted at ±1.96/√(n) = ±0.274, give the 95% confidence interval and are intended to give 

critical values for testing whether or not the autocorrelation coefficients are significantly different from 

zero.  If a process is stationary, approximately only 5% of the autocorrelation points will lie outside the 95% 

confidence interval.  Here, over 40% of the points lie outside the confidence interval, leading us to conclude 

that the original data set is not stationary.   
 

Next, we take first differences of the time series and examine whether or not the resulting data is 

stationary.  A plot of the first differences, as well as its corresponding correlogram, is shown below. 
 

  



  

The plot of second differences indicates a model with a more consistent mean and variation, as necessary 

for stationarity.  The autocorrelation function quickly reduces to zero and oscillates tolerably around zero 

thereafter.  In addition, there is an acceptable amount of points that lie outside the 95% confidence 

interval, and so we conclude that the process is stationary. 

 

MODEL SPECIFICATION  
 

Since the sample autocorrelations of the original series decreased more linearly than exponentially, an 

autoregressive model should be assumed.  We observe a graph of the sample partial autocorrelations to 

determine the appropriate order of the autoregressive model. 

  

The partial autocorrelation at lag 1 is the only one that is significant (i.e. it lies outside the 95% confidence 

interval).  This graph gives a strong indication that we should consider an AR(1) model for this time series.   

Nevertheless, we will entertain an AR(1), AR(2), and AR(3) model for comparison. 



MODEL DIAGNOSTICS  
 

The summary statistics obtained for the three autoregressive models are given below.  Please note that all 

statistics have been rounded to five decimal places for simplicity. 

   
Coefficients p-Values Durbin Watson 

Model Adjusted-R2 Intercept Yt-1 Yt-2 Yt-3 Yt-1 Yt-2 Yt-3 Statistic 

AR(1) 0.93822 43.23547 0.93863 . . 0 . . 1.23902 

AR(2) 0.94257 41.40756 1.31812 -0.37981 . 0 0.00590 . 1.87127 

AR(3) 0.93862 46.74599 1.37164 -0.57805 0.13870 0 0.01900 0.33760 1.96470 
 

First, we observe the p-values.  All the variables are significant at the 95% confidence level (i.e. p<0.05) 

except for Yt-3.  Hence, Yt-3 is not necessary for an accurate model.  

Next, notice that the coefficients (ф1, ф2, and ф3) meet the requirements of the stationarity conditions for 

all three models.  The stationary condition for the AR(1) model requires that|ф1|<1; The stationary 

condition for the AR(2) model requires that |ф2|<1,  ф1+ф2<1,  and  ф2-ф1<1; Finally, the stationary 

condition for the AR(3) model requirest that |ф3|<1  and  ф1+ф2+ф3<1. 

The Adjusted-R2 statistic for all three models is also sufficient.  Adjusted-R2 describes the amount of 

variability that can be explained by the model.  Thus, the higher the Adjusted- R2 statistic, the more 

predictive power the model presents.  Although the statistic increases slightly when moving from an AR(1) 

model to an AR(2) model, the increase is not significant.  Thus, our intial reaction is to choose the AR(1) 

model. 

However, after observing the Durbin-Watson Statistic, an AR(2) model may be more accurate.  The Durbin-

Watson statistic ranges from 0 to 4 and is used to determine the presence of autocorrelation among the 

residuals.  A statistic close to 2 indicates that autocorrelation is not present.   If a Durbin-Watson statistic is 

substantially greater than 2, negative correlation is indicated, and vice versa.  Notice that our AR(1) statistic 

may be cause for alarm since it suggests the presence of positive correlation among the residuals.  The 

other two models, however, show a statistic very close to 2, signifying very little to no correlation.  

Given everything we’ve discussed to this point, it would be reasonable to choose either the AR(1) or AR(2) 

model.  If our objective were simplicity, the AR(1) would be more than effective.  However, if our main 

focus were the accuracy of our predictions, the AR(2) model would be more precise.  The “best model” is 

rather debatable.    

By means of the principle of parsimony, which states that the model should use the least number of 

parameters necessary to adequately represent the time series, we move forward with the AR(1) model.  

This choice also confirms our initial reaction from studying the Partial Autocorrelations of the series.  

FORECASTING  
 

The least-squares estimation for the AR(1) model gives: Yt=0.93863*Yt-1 + 43.23547.  Based on this model, 

we calculate the one-step-ahead forecasts and compare those forecasts to actual data.  A graph of this 

comparison is shown below. 



 

As you can see, the model captures the general shape of the curve.  Therefore, we conclude that it is 

reasonable and effective in forecasting the one-step-ahead burglary rates in WI. 


