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Introduction

The NEAS documentation notes that oscillating time series are rare.  I set out to construct a series that would exhibit a natural oscillation using natural gas data from the Energy Information Administration (see Links).  The derived time series is 
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where production is the amount of natural gas in thousands of cubic feet per year, price is the average price in dollars per thousand cubic feet for a given year, # wells is the number of development and exploratory wells drilled in a year, and cost/well is the average cost of drilling a well.  The series is annual data from 1960 through 2007.  This time series is essentially the ratio of aggregate natural gas market revenue to the cost of maintaining and growing production.  If the ratio is high this means revenue is relatively high to costs and you would expect # wells drilled and costs per well to increase to chase profit.  This should continue until costs have risen enough that chasing more production isn’t cost effective and the ratio should have reverted.  Once the ratio is low, costs should be high relative to revenue and drilling activity will decrease and eventually price will increase from marginal decreases in production.  This should cause the ratio to go back up.  
I used correlograms of the sample autocorrelation and sample partial autocorrelation to specify potential autoregressive models with nonzero terms of lags 1, 10, 16, and 17.  I examined autoregressive models with either only the first lag term or the first and tenth using regression analysis, the Box-Pierce Q Test, and the Durbin-Watson Statistic and eventually decided the autoregressive model with both lag 1 and lag 10 terms was the best model.
Data
The excel plot of the data is below in Chart 1.  
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Chart 1.

Although the data looks a little more volatile in the second half and there are a few more extreme points I decided to model the entire series with a single ARIMA model.  I was expecting there to be an oscillating characteristic and this justifies using a single model.

Specification
The sample acf and sample pacf plots are below in Charts 2 and 3.  These were generated in R.  The ACF shows an oscillating nature that decays fairly quickly.  The sample PACF shows strong terms for lags 1 and 10 and potentially 16 and 17.   I chose to examine AR(1) and an AR(10) model with nonzero terms for lags of 1 and 10.  
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Chart 2: Sample ACF
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Chart 3: Sample PACF
Model Fitting

I used Excel’s regression tool to determine the AR parameters for both of the models I examined.  The R-Square, the adjusted R-Square, F Value, and P value are in Table 1 below.  The equation of the regressed AR(1) model is
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and the regressed AR(10) model is 
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for which the sum of the AR parameters is .451.  
	Model
	R-Square
	Adj. R-Square
	F
	P Value

	AR(1)
	.61
	.60
	70.37587756
	9.42394E-11

	AR(10)
	.70
	.68
	39.98554269
	9.13881E-10


Table 1: Regression Results
The data with the predicted time series is in Chart 4 below.
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Chart 4:  Predicted One Step Ahead Series vs. Actual Series 1970 – 2007

Diagnostics

The standardized residuals for both models are plotted in Charts 5 and 6.  The acf of the residuals were computed in R and the Box-Pierce Q statistic and the Durbin-Watson statistic were computed for both.  Both statistics are summarized in Table 2 below.  

The D.W.S. is approximately 2 for both models indicating white noise residuals and the 10% significance B.P. Q statistics (with 45 – 1 = 44 degrees of freedom for the Chi-Square associated with the AR(1) model and 35-10 = 25 degrees of freedom for the Chi-Square associated with the AR(10) model) both show that the hypothesis that the residuals are white noise can’t be rejected.
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Chart 5: AR(1) Model Standardized Residuals
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Chart 6: AR(10) Model Standardized Residuals

	Model
	D.W.S
	X^2
	B.P. Q S

	AR(1)
	2.1
	56.4
	23.2

	AR(10)
	2.08
	34.4
	16.1


Table 2:  Diagnostic Statistics
Model Selection

Both models have acceptable statistics, but the AR(10) model has a higher R^2 from the regression.  It was also expected that there would be a higher order negative parameter for oscillation.  I therefore think the AR(10) model is better.
Links
Cost per well drilled:

http://tonto.eia.gov/dnav/ng/hist/e_ertwg_xwwn_nus_mdwa.htm
Production:

http://tonto.eia.gov/dnav/ng/hist/n9050us2a.htm
Price:

http://tonto.eia.gov/dnav/ng/hist/n9190us3a.htm
Number of Wells Drilled:

http://tonto.eia.gov/dnav/ng/hist/na1170_nus_8a.htm
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