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Time Series Analysis of the US Monthly House Price Index (1991-2011)
Introduction:  Why House Price Data?

When I first started  this  project (about 18 months ago),  my motivation for choosing to study home prices was simple:  I was new to the NYC area, living in a rental and wanted to know whether it made sense to buy a house.  At that time, housing prices were falling at a nationwide level, but nobody really knew how long this would continue or how far it would be to the bottom.  I wondered if the data would show some sort of clue as to where the rational prices would settle.  
Since then, like many working in financial industries, I’ve grown more interested in US house prices in the abstract.  The housing market is a hot topic in the news--the drop in housing prices precipitated the 2008 recession and these prices still have an impact on the economic recovery.  So, even though the house price data is not ideal for a time series analysis, I will stick with it out of an interest in the topic.  Here I will try to demonstrate some simple time series analysis techniques using this House Price Index data.  We will adjust and detrend the data to bring it to stationarity,  and try to fit an autoregressive model to it, all the time knowing that it has a much more complicated story behind it.

Data Used:
I’ve use Monthly House Price Indices for Census at Purchase-Only Index from January 1991 to September 2010.   (Downloaded from http://www.fhfa.gov/webfiles/21741/MonthlyIndex_Jan1991_to_Latest.xlsx  which is bookmarked at http://www.fhfa.gov/Default.aspx?Page=87 ).  The monthly house price index, is given for various regions of the country, but in this paper I will only look at the region in which I live—the Mid-Atlantic region (New Jersey, Pennsylvania, New York). Although Census seasonally adjusted data is available, I will start with non seasonally adjusted data, consider simple averaging to remove the seasonality, and only then settle with the Census seasonal adjustment. 
Below is a  graph of the data over 21.8 years.  This house price index data forms a times series of 250 monthly points.  It starts at 100;  it then rises and falls through over the 20 years (mostly rises) ending at a price index of 201. The time series is obviously not stationary, as it is trending upwards.
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Figure 1- Housing Price Index, all years, not seasonally adjusted
Again,  the goal of this project is to demonstrate simple time series analysis.  We want to express the time series (or some one-one function of it) as a linear function of time plus an ARIMA model.  In this paper I will not consider the MA type models--moving averages, but instead stick to AR(1) and AR(2) models.  Since the behavior of the above series  changes radically over time, we will also break the time series into two “eras” and analyze these separately.  Part 1 gives reasoning for the break, Parts 2 and 3 examine each of the two pieces.  Part 4 revisits the initial break decision.  

Initial Observations on the Raw Indices
   In considering adjustments to get to stationarity we make two initial observations:
1. The series appears to go through three distinct phases. For the first 5 or 6 years the house price index remains flat.   For the next 8 years it is increasing steadily, and in the remaining 4 years it is slowly dropping.  Perhaps better than viewing the time series as going through three phases would be to see it as going through two phases—one of exponential growth early on, and then after 2006, a more linear decline.  The first phase is sensible:  A natural default model for housing prices would be exponential growth (i.e. a steady rate of increase) and in this series, what is standing out as distinctly different, is the decline of recent times.
2. We know the series should have 12 month seasonality (otherwise the Census wouldn’t have gone through the trouble of providing  “SA” seasonal adjusted indices), but one cannot see it in the overall graph or correlogram, as trend overwhelms the weaker seasonal component.  At some point in adjusting the data, this seasonality will show itself and we will want to use some sort of seasonal adjustment to the data.  As a preview of the 12 month seasonality, we show a correlogram of the first 78 months, where the time series appears flatter.  Here as the autocorrelations have local peaks at 12, 24, 36 and local valleys at 6, 18, 29.  
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Figure 2-Correlogram in flat early period gives a preview of the seasonality
In response to the observations above, we will make some adjustments to the series to move it toward stationarity.  First, corresponding to observation (1), the series should be broken into two or three periods.  Second the series, or part of the series, needs detrending, in a way that accounts for the apparent exponential growth of the early period.  Third, the data will likely need to have seasonality removed.  As stated above, we want to find and apply the proper adjustments to the data in order to get a stationary series of white noise or an ARMA process.  As the three adjustments work together (i.e. the application of one adjustment changes the best choices for the other two), finding the exact ideal assumptions takes quite a bit of back and forth trial and error. Instead of promising the perfect adjustments we will make reasonable assumptions in our adjustments. 

PART 1:  Breaking up the Time Series into 2 or 3 “Eras”
Rejected Approach: Three Time “Eras”:  The time series has an obvious behavior change at around 180 months, as after a peak here it begins to decline.   There is also a more subtle change around 78 months (6.5 years) where the series appears to go from a rather linear growth to a more exponential growth.  A more ambitious, but less parsimonious project would break the series into three eras and find separate models for each these eras.  A reasonable break-up would be something like the following:


0 to 78 months—a flat trend

79 to 180 months—exponential growth

180 months to 250 months—slow decline
However, for the sake of simplicity (and to avoid more Excel coding) we will break the series only once.   Besides, breaking the series into three parts would reduce the number of points to about 70 months in each which may be too small to really work with, especially if we plan to de-seasonalize with a 12 month average.  Therefore we content ourselves to breaking the series into only two eras.
Adopted Approach: Two Time “Eras”:   As was noted in the previous paragraph, the series does seem to have an obvious break at the beginning of 2006.  This would mean that there are two eras:  the 180 months before the peak of house prices and the 70 or so months after.  However, the detrended peak of the HPI data is set back somewhat earlier at month 174.  And in anticipation of our later analysis which looks at monthly rate of price growth not the pure house index, (e.g. HPIfeb /HPI jan -1) we can go back even earlier.   Below we show this monthly growth rate in seasonally adjusted HPI’s:  (Without the seasonal adjustment, the rates fluctuate too wildly to get a good sense of what is going on.) We can choose as a breakpoint the last peak of the House Price index rate of monthly change which occurs at month 155.  
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Figure 3:  Era 1 break point determined by HPI growth rate
 A bit of experimentation shows this last option for breakpoint is the best choice (in terms of getting to stationarity).  Therefore we break the series into the following two eras:

Period 1:  1 to 156 months (January 1991 to January 2004)

Period 2:  156 to 236 months (January 2004 to October 2011)
For parts 2 and 3 of this paper,  we will treat these as two separate time series, requiring differing models and parameters, and will analyze each in its own part.
PART 2—Analysis of First Time Era (January 1991 to December 2003)
Adjustments towards Stationarity: Detrending, Differencing and Logarithms 
The seemingly exponential growth in the first period series suggests that a stationary series may be obtained by taking the ln and then differences and then, if necessary,  detrending (i.e. regress and remove linear trend). If we knew nothing about the data at all, we would arrive at this adjustment after a few steps—we’d see the exponential growth, take lns and after viewing the correlogram take first differences and then detrend.  This adjustment, before detrending,  has a natural interpretation as monthly rate of change in house prices.   Below is a graph of this monthly % change in HPI (we will refer to this time series as the “HPI monthly growth rate time series”). 
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Figure 4- First Era, HPI(NSA) Monthly Growth Rate, Not Detrended
One can see that this needs to be detrended as growth rates seem to rise over the period.  Perhaps one could spot the seasonality in this series plot., but the correlogram makes it much clearer: 
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Figure 5-First Era-Shows Seasonality and a need for Detrending.
The correlogram clearly shows 12 month seasonality in the peaks at lags 12, 24 and 36.  The highness of the sample autocorrelations in general also confirms that  there is a need to detrend the series.   
The detrended series is the original HPI (NSA) monthly growth rate series with a linear regression of  0.998+ 0.0072% * t months subtracted: [image: image6.emf] Monthly Growth Rate HPI (NSA) 
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Figure 6: First Era, Monthly Growth Rate HPI (NSA) Detrended
The correlogram again shows that the seasonality we expected, but now that the series is detrended the autocorrelations are not so large:
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Figure 7—Detrended HPI growth rate correlogram indicates a rather simple seasonality 
Note that nearly all these early autocorrelations are significant (outside of  1.96/sqrt(155)= +/- 0.16 radius for 90% significance), so although the series  may be stationary, it is not a simple AR(1) or AR(2) yet.  We can see that seasonality is now probably the best explanation for the high autocorrelations.  
Crude Seasonal Adjustments to the First Era 

Although I experimented with various ways to remove the seasonality from the detrended  HPI(NSA) Monthly Growth Rate time series, I will discuss only 12 month moving average.  A moving average is what we use at my work to de-seasonlize loss trend, so it is worth a try here.   So we take the HPI’s for the Mid-Atlantic region and average these over the 12 previous months to create moving averages.  Then we apply the ln of the quotients and  detrend as we did above.  Below is the Corellogram of this HPI  Monthly growth rate averaged over the prior 12 months (detrended).  
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Figure 8:  AC for 12 month average monthly HPI growth rate.  
This is not an improvement over the autocorrelations in Figure 7 as even more autocorrelations are far outside the significance boundary.  And these autocorrelations are not diminishing with lag. Note the large negative autocorrelation at 12.  Moving averages over period n seem to always give a large negative AC at n.  Unfortunately, this “moving average” solution to the seasonality will not work.
Using Census Seasonally Adjusted First Era 

The Census has given us “seasonally adjusted” data.  Although we don’t know how the adjustment is made, we can still use the data and see if it solves our seasonality problem.  The Census  seasonally adjusted detrended HPI Rates appear similar to Figure 6, the same series without seasonal adjustment:
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Figure 9: Seasonally Adjusted and Detrended
The correlogram for this series does show that  the seasonality has been removed.    
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Figure 10:  Census Seasonally Adjusted First Era—Over-differenced or white noise? 
Only the first sample autocorrelation is significant, and negative.  A negative and significant first autocorrelation is often a symptom of  “over-differencing”.  We will not, however go back to the pure un-differenced HP indices (instead of the growth rates), as this inevitable leads us to this same correlogram. 

So far the model we have for this series is:


Seasonally adj. HPI growth rate (per month) (time t months) 





=  + * t  + random component 





=   0.998 +  .0073% * t  + random component

Do we believe that the random component is white noise?  Diagonostics tell us no.  The DW statistic is 2.47 which may be okay, but the Box-Pierce statistics are all very large—up to 100  these are above the top 10%-ile.  Lets model the random component with AR(1).
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Figure 11:  Correlogram of AR(1) Residuals for Era 1 suggest a non-linear trend
The AR(1)  fitting does not improve the Box Pierce Statistics (all BP stats for k between 10 and 80 are 20%ile or worse) , nor are the autocorrelations much better.   We know that the series has been linearly regressed, and yet the large  number of positive autocorrelations early on in the correlogram make one think there is some sort of trend.   In fact, if we look back at the time series graph of the detrended HPI rates (see figure 9), these rates do appear to dip down and then come back up.  
The moral of the story, I think, is that we have a non linear trend in the growth rates, and our analysis has assumed that monthly growth rates were linear--increasing at a constant rate.  We cannot hope to see subtle stationary series when trend is in the way like this.  Perhaps we will have better luck with the second era—the extremely volatile bursting of the bubble. 
PART 3:  Analysis of Second Time Era (January 2004 to October 2011)
For the series in the second time era we will go straight for the Census Seasonally adjusted data.   We  will not necessarily want to treat this second time series with the same adjustments as the first.  The raw indices, corresponding to the last 80 months, appear to be a random walk (with a lucky streak in the beginning) :
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Figure 12-Housing Prices since 2004 appear to be a random walk.
The correlogram also argues that this may be a random walk.  The autocorrelations decrease linearly, not geometrically.  Both detrended and undetrended correlograms are similar.  
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Figure 13—Housing Price Autocorrelations, second Era 
Such a correlogram calls for first differences.  Below shows the first differences of the series, detrended.  This does give a time series which is getting closer to white noise.   
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Figure 14: First Differences HPI in Second Era
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Figure 15: First Differences HPI in Second Era
The correlogram of the first differences of the series, has a pattern similar to that of the first era.  That is, it has many positive autocorrelations early on, and many negative later on.  This is explained by the dip in the center of the graph in Figure 14.  But unlike the first era case where we could not cleanly  fit residuals  to either white noise or AR(1), these residuals can pass for white noise.  The diagnostics are good:
· Only three of the first 50 sample autocorrelations are significant ( that is in the 95% ile so rk > 1.96/sqrt(95) )

· The DW statistic is 2.21 which is in the ballpark of normal white noise. 
· Box Pierce Statistics are small enough for this to be considered white noise.  Recall that the BP statistic:

Q​k ​= n * ( r​12 + r22  + … r​k2)   is chi square with k-p-q degrees of freedom

For the first 100 k, all but the first 13 or 14 Q k’s are in the tail of the chi square distribution beyond 50%.  (I have simulated white noise to recognize these BP statistics as well within the realm of normal.)  

Thus we have a partial victory for this second era.  We can call the detrended first differences “white noise”.  Not ARI(1) or ARI(2), but at least stationary.  
PART 4:  Is any part of this series an ARIMA?

The subseries in the first era, after adjustments and detrending could not be successfully fit to an ARIMA model and the subseries in the second era, after adjustments and detrending, was simply white noise.  So is there any portion of the original full series which gives good results in our time series fitting? 

The Excel workbook I’ve made makes it easy to search for such a series piece.  Experimentation shows one must narrow down to subseries which are:
a. Seasonally adjusted (SA)

b. First differences of the HPI or log of the quotients.  Otherwise, the series is not at all stationary– the detrended HPI's appear to be a mean zero random walk and autocorrelations are far too high for far too long.
c. Short enough (about 70-80 points) that the series is stationary.  (There is some non linear trend in this data which we cannot remove with our simple tools.) 

We find a nice spot between 1998 and 2004 where the increases in HPI seem to see-saw between large and small.  
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Figure 16:  Middle 70 points in Series
Here the correlogram shows a significantly negative autocorrelation at k=1, and an alternating pattern after. 
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Figure 17: Middle Times, First differences--Possible AR(1)?

The large negative first autocorrelation may make one think that this is over differenced.  But it is also plausible that this is a true AR(1) with a negative correlation.  Notice how the autocorrelations alternate. 
Let us fit the residuals of this detrended first differences to an AR(1). We have the model:



Yt+1
=  Yt +  + white noise



=  - 0.495 Yt +  .07% * + white noise
Where Yt+1 = HPI(SA) first differences (per month) (time t months).  The  here, -0.627, is based on regression fitting the model.  The Yule Walker equations give  as -0.658.
To see whether the "white noise" in the model actually behaves as white noise, we check the correlogram for the residuals of the fitting and look at the diagnostic statistics. 
[image: image18.emf]Sample Autocorrelations

Residuals of AR(1)

First Differences HPI (SA) Mid Atlantic Region

Middle Time (82-152) 

-0.69

-0.46

-0.23

0.00

0.23

0.46

0.69

1 3 5 7 9 1113151719212325272931333537394143454749

  Lag  


Figure 18:  Residuals of ARI(1,1) to HPI(SA)—white noise.
The correlogram supports the theory that this is white noise. And the diagnostics are good:

· Only one of the first 50 sample autocorrelations are significant ( that is in the 95% ile so r k > 1.96/sqrt(70) )

· The DW statistic is 2.23, a little large, but not fatal.
· All  but 6 of the BP statistics are under 50 %-ile.  
So had we broken the series into three eras instead of two, this middle era at least, would have behaved in a workable way. 

Conclusion

Although we had limited success, we did demonstrate some simple time series techniques using the HPI data.  In analyzing this data and trying to fit an AR model to it, one is tempted to break up the series into smaller and smaller sub-series, because it is easier to get the small pieces to obey a model.  Doing this however, is a type of “over-fitting”—getting the model to work great with the observed data, but losing all predictive power.  In  reality, this housing data needs some sort of informed adjustment before a valid analysis can be done to it.  Then, perhaps one can model the market as going through a few separate stationary time series “behaviors.”  But any one such behavior of the market can change at a moments notice, meaning any model given cannot really have predictive power.  So if stationarity implies a certain kind of consistency of the time series across all times, we can say the housing market, (and perhaps all markets), is a particularly stubborn brand of non-stationary time series.  There is probably no adjustment we could ever make to get the House Price Index data  to be stationary, but it was worth trying.
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