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     Time Series

Spring 2011

Unleaded Gas Prices Projection

Introduction

Gas prices frequently change due to numerous reasons; most of them cannot be controlled by us, the end-users. Examples of them are current supply, oil demand, oil reserves and potential crises.

This Time Series project will use historical gas prices to create a model that can forecast future gas prices.

Data

The data used in this project came from the following website: http://www.alternat1ve.com/philippine-gas-prices.php 
It contains the actual unleaded gasoline prices of ten (10) oil companies from March 2005 to September 2011. I then gathered each month-end’s average prices to forecast future prices.
Below is the graph of the monthly average prices.

[image: image1.emf]Monthly Average Price (March 2005 to September 2011)
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Examining the graph below, it is hard to detect any seasonality in the data.
[image: image2.emf]Monthly Average Prices by Year
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We will next look at the autocorrelation function:
[image: image3.wmf]Autocorrelation Plot
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We can see that there are no evident peaks which would indicate seasonality; instead, the graph tails off. This behavior indicates that an AR and/or MA model is suitable for this time series.

[image: image4.wmf]Partial Autocorrelation Plot
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The above partial autocorrelation plot quickly drops below zero after lag 2 instead of tailing off. Hence, an AR(p) model might best fit this particular time series with p = 2. We will also take a look at AR(1) and AR(3) models since they might also be suitable.

Test for Stationarity

We now perform Bartlett’s test to examine the stationarity of the process. Bartlett’s test states that if a process is white noise, approximately only five percent of the autocorrelation data points will lie out side of the 95% confidence interval centered on zero. The approximate standard deviation of the process is the reciprocal of the square root of the number of terms. Hence, the parameters are as follows:

σ = 1/(square root of n) = 1/(79^0.5) = 0.1125, where n is the number of data
95% CI = ±1.96*σ = ±1.96*0.1414 = ± 0.2205
We can see from the above graph that only two of the seventy-eight observations fall outside of the interval. This confirms the stationary process.

Model Fitting

Now that we have determined stationarity, we will fit our data to various models. We will use the Microsoft Excel’s regression analysis tool to fit our data to an AR(1), AR(2) and AR(3) models. The resulting model parameters are as follows.

AR(1)

Y(t) = 2.18167 + 0.95486Y(t-1)
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[image: image6.emf]Fitted Values of Model vs Actual Prices
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Y(t) = 3.03915 + 1.40795Y(t-1) - 0.47771Y(t-2)
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[image: image8.emf]Fitted Values of Model vs Actual Prices
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[image: image10.emf]Fitted Values of Model vs Actual Prices
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To confirm that the three autoregressive models tested were stationary, we take the sum of the coefficients:


Model

Sum of Coefficients


AR(1)

0.95486


AR(2)

0.93024


AR(3)

0.90444

Since the sum of the coefficients of each autoregressive model tested was less than one, we verified that the three models are stationary.

Best Fit Model

We can see from the above graphs that any of the three models does a reasonable job of forecasting. To choose the model that best fit the actual data, we first look at the R-squared values. The R-squared values increase as we move from AR(1) to AR(2). It increases slightly from AR(2) to AR(3). 
The P-values are high for the AR(3) models and almost zero for both the AR(1) and AR(2) models.

Taking into account both the R-squared values and the P-values, we can conclude that the AR(2),

Y(t) = 3.03915 + 1.40795Y(t-1) - 0.47771Y(t-2),
is the model that best forecast the monthly gas prices.
