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1.0 Introduction 
 

Tourism is a popular global activity and has become vital for many countries due to the 

large sums of money being spent on goods and services. Canada depends heavily on 

tourism and consequently forms a large industry that heavily impacts its economy.  

 

Since Canada shares the largest undefended border in the world with the US, a large 

portion of tourists visiting Canada are Americans. That being said, it would be very 

beneficial for Canadians to be able to forecast the number of tourists entering Canada 

from the US on a monthly basis. This prediction could aid Canadian economy, ensuring 

that adequate resources are available to accommodate the US visitors in the upcoming 

months. 

 

I decided to use a dataset from Statistics Canada1, which encapsulates the number of 

entrants per month coming from the US into Canada, who stay overnight. I obtained a 

little over 35 years of data starting from 1972 up until April, 2007.  To ensure I modeled 

the data correctly I have defined a training set from January 1972 till December 2005 

and have identified my testing set as that from January 2006 up until April 2007. 

  

Looking at an initial plot (see Section 2.1 below) of the data we see that there is an 

obvious seasonal component with some sort of trend. Possible models to account for 

these observances are causal, autoregressive integrated moving average (ARIMA) and 

seasonal autoregressive integrated moving average (SARIMA). 

 

 

 

 
                                                 
1
 http://www.StatCan.ca 

 

http://www.statcan.ca/
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2.0 Detailed Results 
 

2.1 Data Transformation 

 

Looking at a time series plot (below) we see that the data is clearly non-stationary; with 

clear trends and strong seasonality. The ACF plot (see Figure 1B below) confirms this 

notion of a cyclical trend and seasonality.  

Figure 1: The time series plot of the number of US entrants into Canada per 

month

 
Time series plot of Number of Tourists from January 1972 – December 2005 
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Figure 1B:  An ACF and PACF plot of data from January 1972 – December 2005 

 

 

 

To remove the heteroscedasticity from the data, I applied 2 transformations, the log and 

square root (see Figure 2A in appendix A). The transformations were not enough to 

remove the strong seasonality in the data, leading me to perform seasonal differencing 

on the data at lag 12. Looking at the seasonally differenced and transformed time series 

plots (see Figure 2B in Appendix A), the square root-transformed tourist visits appear 

heteroscedastic. In contrast, the seasonally differenced log-transformed tourist visits 

are almost homoscedastic. This led me to continue my investigation with the log-

transformed data.  

 

Looking at the ACF plot (see Figure 3 below) of log-transformed tourist data, I noticed 

that the seasonal differencing removes a lot of seasonality, but there still exist some 

minor trend in the data.  
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Figure 3: ACF and PACF plots of seasonally differenced and logged data 

 

However, I felt confident that after further application of ordinary (classical) differencing 

to the seasonal log-transformed data, I could select an appropriate model to represent 

our dataset. I was not wrong in my judgment and did, in fact, find a model that fits the 

data well, as demonstrated in the next section. 

 

2.2 Model Selecting 

 

To determine the various candidates for the best model, we look at the ACF and PACF 

plots of classical and seasonal log-transformed data (see Figure 4a below). There is 

significant correlation at lag 1 in the ACF plot, while the PACF plot shows significant 

correlation until the 4th lag. There are a few other significant correlations at higher lags, 

however they are likely due to sampling error. The observations made from the ACF and 

the PACF plots lead us to select p = 4 and q = 1 for the model. 
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Figure 4a: Time series plot, ACF, and PACF of classically and seasonally differenced logged data 

 

 

We also look at the seasonal log-transformed data (see Figure 4b below). There is 

significant correlation until lag 5 in the ACF plot. In contrast, the PACF plot shows 

significant correlation at lags 1, 2, and 3. We look at p = 3, and q = 5 in our model, but 

we also try p = 5 and q = 3 to account for sampling error.  
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Figure 4b: Time series plot, ACF, and PACF of classically and seasonally differenced logged data 

 

To determine the best model, we look at various ARIMA (p, 1, q) and examine the AIC 

and the σ2 of the models, selecting the model with the lowest AIC. We look at a few 

models - seasonal and non-seasonal – in an attempt to fit our data. Some of the 

seasonal models that I looked at include: 

 

 SARIMA (4,1,1) * (3,1,5) 

 SARIMA (4,1,1) * (5,1,3) 

 SARIMA (4,1,1) * (4,1,3) 

 SARIMA (4,1,1) * (3,1,4) 

 SARIMA (4,1,1) * (6,1,3) 

 SARIMA (4,1,1) * (5,1,4) 
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Below is a summary of the models: 
 

Model Seasonal Classical & 
Seasonal 

AIC σ2 Log 
likelihood 

1 (4,1,1) (3,1,5) -1028.38 0.003916 528.19 

2 (4,1,1) (5,1,3) -1071.08 0.003367 549.54 

3 (4,1,1) (4,1,3) -1068.07 0.00342 547.03 

4 (4,1,1) (3,1,4) -1052.49 0.003607 539.25 

5 (4,1,1) (6,1,3) -1058.28 0.003497 544,14 

6 (4,1,1) (5,1,4) -1083.45 0.003156 556.73 

 

Based on the lowest AIC and σ2, we chose SARIMA (4,1,1) * (5,1,3). Next, I conducted a 

residual analysis to test out the model.  

 

2.3 Model Testing 

 

SARIMA (4,1,1) * (5,1,3) is selected as the final model to forecast the number of tourists. 

It is important to test the model residuals for homoscedasticity, correlation and 

normality.  
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Figure 6: Tsdiag for SARIMA (4,1,1) * (5,1,3) 

 

Now, looking at the Ljung-Box (see Figure 6 above), we see that none of the p-values are 

significant enough to reject the normality hypothesis. Meanwhile, the ACF of the 

residuals shows no significant correlations, except at lag 11, we regard this as error, and 

the standardized residuals chart shows no clear trends.  These charts suggest that the 

residuals are normally distributed and independent. The result of the Shapiro-Wilk test, 

with the SW = 0.9843, and the QQ-plot (see Figure 7 in Appendix A) also confirms the 

normality assumptions.  

Therefore, we can say with confidence that our model meets the OLS assumptions. 
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3.0 Conclusion 
 

After conducting a residual analysis of our model, SARIMA (4,1,1) * (5,1,3), I can 

conclude that the model chosen is a good fit for the data. The model residuals, being 

white noise, meet all the OLS assumptions. I used the model to predict the number of 

entries per month from the US into Canada, staying overnight, over the testing period 

from January 2006 to April 2007. The table below includes the true monthly tourist 

values over the testing period, as well as the predicted ones. We notice that the 

predicted values of the number of entries from our model are very close estimates of 

the true values from the data. The true values from the data lie within the 95% 

prediction interval of our predicted values. Therefore, we can conclude that the model 

used is very capable of predicting future values.  

 

Month Value 
(1) 

Predicted 

Value 

(2) 

Error 

|(1) – (2)| 

95% 

Prediction 

Interval 

Correct 

Prediction 

within 

95% 

Jan 2006 555,207.0 565,847.3 10,640.30 (505,047.8 , 

633,966.0) 

Yes 

Feb 2006 632,462.0 684,700.6 52,238.60 (604,939.1 , 

774,978.7) 

Yes 

Mar 2006 722,212.0 764,204.2 41,992.20 (667,117.3 ,  

875,420.3) 

Yes 

Apr 2006 831,343.0 777,010.6 54,332.40 (672,631.0 , 

897,587.9) 

Yes 

May 2006 1,149,851.0 1,076,711.5 73,139.50 (928,812.8 , 

1,248,160.8) 

Yes 

Jun 2006 1,725,335.0 1,677,050.7 48,284.30 (1,441,490.1 

, 

1,951,195.3) 

Yes 

Jul 2006 2,294,960.0 2,285,811.7 9,148.30 (1,959,646.5 

, 

2,666,264.0) 

Yes 

Aug 2006  2,111,749.0 2,210,867.4 99,118.40 (1,890,954.0 

, 

2,584,904.2) 

Yes 

Sep 2006 1,373,629.0 1,236,838.7 136,790.30 (1,055,342.9 Yes 
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, 

1,449,547.8) 

Oct 2006 923,754.0 862,292.1 61,461.90 (734,083.9 , 

1,012,891.9) 

Yes 

Nov 2006 681,779.0 654,746.9 27,032.10 (556,106.7 , 

770,883.6) 

Yes 

Dec 2006 852,780.0 795,149.4 57,630.60 (673,795.1 , 

938,360.2) 

Yes 

Jan 2007 526,722.0 537,090.1 10,368.10 (448,761.7 , 

642,803.8) 

Yes 

Feb 2007 586,835.0 657,175.8 70,340.80 (545,926.5 , 

791,095.6) 

Yes 

Mar 2007 672,289.0 764,075.9 91,786.90 (630,786.3 , 

925,530.5) 

Yes 

Apr 2007 733,374.0 751,871.8 18,497.80 

 

(617,374.8 , 

915,669.4) 

Yes 
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4.0 General Discussion 
 

In the tourism industry, weather and economy have significant impacts when 

forecasting. As Canada’s tourism industry largely relies on the US, the industry is also 

largely affected by American economic conditions. Some major economic shocks that 

have shaped the tourism industry in the past include: 

- Policy changes for border crossing (passport requirements) 

- The terrorist attacks of 9/11 

- The US Dollar exchange rate 

 With mix of unpredictable and predictable variables, as mentioned above, a forecasting 

in the tourism industry may indeed be more difficult than first imagined. This is the 

biggest limitation of our model. Even though the data accounts for these occurrences 

with spikes and dips, there is really no way quantify shocks previously observed. 

Therefore we cannot forecast tourist numbers with absolute certainty taking into 

account current economic conditions.  
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Appendices 

 

Appendix A: List of Figures 

 
Figure 2A: A time series plot the transformation of our data (Log and Square Root) 

 

 

 

Figure 2B: A Time series plot of seasonally differenced and logged & seasonally differenced and 

square rooted data 
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Figure 5A: Residual Plots 
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Figure 5B: ACF, PACF of residuals and Runs Test for SARIMA (4,1,1) * (5,1,3) 
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Figure 7: QQ plot for SARIMA (4,1,1) * (5,1,3) 

 

 

Runs Test 

 
 

Shapiro-Wilks Test 
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Appendix B: Outputs for Different Models Considered 

 

MODEL 1 

 

 

MODEL 2 

 

 

MODEL 3 

 

 

MODEL 4 
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MODEL 5 

 

 

MODEL 6 

 

 

Appendix C: Prediction 
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Appendix D: Regression Models 

 

Regression Models 

 

Indicator Variable Model with a Time Component 

 

regData<-read.csv("updatedData.csv", header = TRUE) 

 

MONTH<-MONTH[1:408] 

YEAR<-YEAR[1:408] 

 

TIME<-seq(1,408,1) 

 

JAN<-MONTH==1 

FEB<-MONTH==2 

MAR<-MONTH==3 

APR<-MONTH==4 

MAY<-MONTH==5 

JUN<-MONTH==6 

JUL<-MONTH==7 

AUG<-MONTH==8 

SEP<-MONTH==9 

OCT<-MONTH==10 

NOV<-MONTH==11 

DEC<-MONTH==12 

 

indModel<-

lm(NUM~JAN+FEB+MAR+APR+MAY+JUN+JUL+AUG+SEP+OCT+NOV+TIME) 

  

summary(indModel) 

 

Call: 

lm(formula = NUM ~ JAN + FEB + MAR + APR + MAY + JUN + JUL +  

    AUG + SEP + OCT + NOV + TIME) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-384519  -67208  -20142   54981  699398  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  434876.21   27057.05  16.073  < 2e-16 *** 

JANTRUE     -177446.65   34025.40  -5.215 2.97e-07 *** 

FEBTRUE      -98419.81   34024.32  -2.893  0.00403 **  

MARTRUE      -27090.57   34023.35  -0.796  0.42637     

APRTRUE       80204.65   34022.48   2.357  0.01889 *   
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MAYTRUE      493908.07   34021.71  14.517  < 2e-16 *** 

JUNTRUE      991328.61   34021.05  29.139  < 2e-16 *** 

JULTRUE     1794789.92   34020.49  52.756  < 2e-16 *** 

AUGTRUE     1768556.75   34020.03  51.986  < 2e-16 *** 

SEPTRUE      705350.56   34019.67  20.734  < 2e-16 *** 

OCTTRUE      266969.80   34019.41   7.848 4.02e-14 *** 

NOVTRUE      -28095.22   34019.26  -0.826  0.40938     

TIME            738.40      58.98  12.519  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 140300 on 395 degrees of freedom 

Multiple R-Squared: 0.9602,     Adjusted R-squared: 0.959  

F-statistic: 794.8 on 12 and 395 DF,  p-value: < 2.2e-16 

 

acf(indModel$residuals) 

 
 

While the indicator regression model has good explanatory properties (R-Squared is 

high) and most of the indicator variables are significant, the residual standard error is 

very high, 140300 compared to 0.003367 for our chosen model2. Meanwhile, the acf plot 

of the residuals shows that there is a high positive correlation between the error terms at 

all lags. 
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Indicator Model with a Year Component 
 

indModel<-

lm(NUM~JAN+FEB+MAR+APR+MAY+JUN+JUL+AUG+SEP+OCT+NOV+YEAR) 

summary(indModel) 

 

Call: 

lm(formula = NUM ~ JAN + FEB + MAR + APR + MAY + JUN + JUL +  

    AUG + SEP + OCT + NOV + YEAR) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-384519  -67208  -20142   54981  699398  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.703e+07  1.408e+06 -12.098  < 2e-16 *** 

JANTRUE     -1.856e+05  3.402e+04  -5.455 8.66e-08 *** 

FEBTRUE     -1.058e+05  3.402e+04  -3.110  0.00201 **  

MARTRUE     -3.374e+04  3.402e+04  -0.992  0.32196     

APRTRUE      7.430e+04  3.402e+04   2.184  0.02955 *   

MAYTRUE      4.887e+05  3.402e+04  14.367  < 2e-16 *** 

JUNTRUE      9.869e+05  3.402e+04  29.010  < 2e-16 *** 

JULTRUE      1.791e+06  3.402e+04  52.650  < 2e-16 *** 

AUGTRUE      1.766e+06  3.402e+04  51.900  < 2e-16 *** 

SEPTRUE      7.031e+05  3.402e+04  20.669  < 2e-16 *** 

OCTTRUE      2.655e+05  3.402e+04   7.804 5.42e-14 *** 

NOVTRUE     -2.883e+04  3.402e+04  -0.848  0.39719     

YEAR         8.861e+03  7.078e+02  12.519  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 140300 on 395 degrees of freedom 

Multiple R-Squared: 0.9602,     Adjusted R-squared: 0.959  

F-statistic: 794.8 on 12 and 395 DF,  p-value: < 2.2e-16 
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acf(indModel$residuals) 

 

 
 

Again, while this variation of the indicator model has good explanatory properties, it is 

no better than the first regression model and still has a very high standard error. The 

residuals also seem to be highly correlated. 

 

Sinosoidal Model 

 

cos1<-cos(2*pi*MONTH/12) 

sin1<-cos(2*pi*MONTH/12) 

sinModel<-lm(NUM~cos1+sin1) 

summary(sinModel) 

 

Call: 

lm(formula = NUM ~ cos1 + sin1) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-925240 -377157   -2416  239518 1527486  

 

Coefficients: (1 not defined because of singularities) 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1066717      25218   42.30   <2e-16 *** 

cos1         -664513      35663  -18.63   <2e-16 *** 
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sin1              NA         NA      NA       NA     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 509400 on 406 degrees of freedom 

Multiple R-Squared: 0.461,      Adjusted R-squared: 0.4596  

F-statistic: 347.2 on 1 and 406 DF,  p-value: < 2.2e-16 

 

 

acf(sinModel$residuals) 

 

 

The sinusoidal model proves to be both a poor fit and has a high standard error. 

Moreover, the residuals seem to be highly correlated and seem to display a seasonal 

pattern. 

 


