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1.0 Introduction

Tourism is a popular global activity and has become vital for many countries due to the
large sums of money being spent on goods and services. Canada depends heavily on

tourism and consequently forms a large industry that heavily impacts its economy.

Since Canada shares the largest undefended border in the world with the US, a large
portion of tourists visiting Canada are Americans. That being said, it would be very
beneficial for Canadians to be able to forecast the number of tourists entering Canada
from the US on a monthly basis. This prediction could aid Canadian economy, ensuring
that adequate resources are available to accommodate the US visitors in the upcoming

months.

| decided to use a dataset from Statistics Canada®, which encapsulates the number of
entrants per month coming from the US into Canada, who stay overnight. | obtained a
little over 35 years of data starting from 1972 up until April, 2007. To ensure | modeled
the data correctly | have defined a training set from January 1972 till December 2005

and have identified my testing set as that from January 2006 up until April 2007.

Looking at an initial plot (see Section 2.1 below) of the data we see that there is an
obvious seasonal component with some sort of trend. Possible models to account for
these observances are causal, autoregressive integrated moving average (ARIMA) and

seasonal autoregressive integrated moving average (SARIMA).

! http://www.StatCan.ca
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2.0 Detailed Results

2.1 Data Transformation

Looking at a time series plot (below) we see that the data is clearly non-stationary; with
clear trends and strong seasonality. The ACF plot (see Figure 1B below) confirms this
notion of a cyclical trend and seasonality.

Figure 1: The time series plot of the number of US entrants into Canada per

month
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Figure 1B: An ACF and PACF plot of data from January 1972 — December 2005
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To remove the heteroscedasticity from the data, | applied 2 transformations, the log and
square root (see Figure 2A in appendix A). The transformations were not enough to
remove the strong seasonality in the data, leading me to perform seasonal differencing
on the data at lag 12. Looking at the seasonally differenced and transformed time series
plots (see Figure 2B in Appendix A), the square root-transformed tourist visits appear
heteroscedastic. In contrast, the seasonally differenced log-transformed tourist visits
are almost homoscedastic. This led me to continue my investigation with the log-

transformed data.

Looking at the ACF plot (see Figure 3 below) of log-transformed tourist data, | noticed
that the seasonal differencing removes a lot of seasonality, but there still exist some

minor trend in the data.



Figure 3: ACF and PACF plots of seasonally differenced and logged data
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However, | felt confident that after further application of ordinary (classical) differencing
to the seasonal log-transformed data, | could select an appropriate model to represent
our dataset. | was not wrong in my judgment and did, in fact, find a model that fits the

data well, as demonstrated in the next section.

2.2 Model Selecting

To determine the various candidates for the best model, we look at the ACF and PACF
plots of classical and seasonal log-transformed data (see Figure 4a below). There is
significant correlation at lag 1 in the ACF plot, while the PACF plot shows significant
correlation until the 4™ lag. There are a few other significant correlations at higher lags,
however they are likely due to sampling error. The observations made from the ACF and

the PACF plots lead us to select p = 4 and g = 1 for the model.



Figure 4a: Time series plot, ACF, and PACF of classically and seasonally differenced logge
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We also look at the seasonal log-transformed data (see Figure 4b below). There is
significant correlation until lag 5 in the ACF plot. In contrast, the PACF plot shows
significant correlation at lags 1, 2, and 3. We look at p =3, and q =5 in our model, but

we also try p =5 and q = 3 to account for sampling error.
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Figure 4b: Time series plot, ACF, and PACF of classically and seasonally differenced logged data

To determine the best model, we look at various ARIMA (p, 1, g) and examine the AIC

and the o® of the models, selecting the model with the lowest AIC. We look at a few

models - seasonal and non-seasonal — in an attempt to fit our data. Some of the

seasonal models that | looked at include:

SARIMA (4,1,1) * (3,1,5)
e SARIMA (4,1,1) * (5,1,3)
e SARIMA (4,1,1) * (4,1,3)
e SARIMA (4,1,1) * (3,1,4)
e SARIMA (4,1,1) * (6,1,3)
e SARIMA (4,1,1) * (5,1,4)



Below is a summary of the models:

2

Model | Seasonal Classical & AIC o Log
Seasonal likelihood
1 (4,1,1) (3,1,5) -1028.38 0.003916 528.19
2 (4,1,1) (5,1,3) -1071.08 0.003367 549.54
3 (4,1,1) (4,1,3) -1068.07 0.00342 547.03
4 (4,1,1) (3,1,4) -1052.49 0.003607 539.25
5 (4,1,1) (6,1,3) -1058.28 0.003497 544,14
6 (4,1,1) (5,1,4) -1083.45 0.003156 556.73

Based on the lowest AIC and ¢°, we chose SARIMA (4,1,1) * (5,1,3). Next, | conducted a

residual analysis to test out the model.

2.3 Model Testing

SARIMA (4,1,1) * (5,1,3) is selected as the final model to forecast the number of tourists.

It is important to test the model residuals for homoscedasticity, correlation and

normality.
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Figure 6: Tsdiag for SARIMA (4,1,1) * (5,1,3)

Now, looking at the Ljung-Box (see Figure 6 above), we see that none of the p-values are
significant enough to reject the normality hypothesis. Meanwhile, the ACF of the
residuals shows no significant correlations, except at lag 11, we regard this as error, and
the standardized residuals chart shows no clear trends. These charts suggest that the
residuals are normally distributed and independent. The result of the Shapiro-Wilk test,
with the SW = 0.9843, and the QQ-plot (see Figure 7 in Appendix A) also confirms the
normality assumptions.

Therefore, we can say with confidence that our model meets the OLS assumptions.
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3.0 Conclusion

After conducting a residual analysis of our model, SARIMA (4,1,1) * (5,1,3), | can
conclude that the model chosen is a good fit for the data. The model residuals, being
white noise, meet all the OLS assumptions. | used the model to predict the number of
entries per month from the US into Canada, staying overnight, over the testing period
from January 2006 to April 2007. The table below includes the true monthly tourist
values over the testing period, as well as the predicted ones. We notice that the
predicted values of the number of entries from our model are very close estimates of
the true values from the data. The true values from the data lie within the 95%
prediction interval of our predicted values. Therefore, we can conclude that the model

used is very capable of predicting future values.

Val Predicted Error 95% PSeczjri::i::;n
Month | vV&/Uue V?Z';Je L) - @) P{ﬁfe'f\t/':l” within
1) 95%

Jan 2006 | 555207.0| 5658473 |10,640.30 | (505,047.8, | Yes
633,966.0)

Feb 2006 | 632,462.0 | 684,700.6 | 52,238.60 | (604,939.1, | Yes
774,978.7)

Mar 2006 | 722,212.0 | 764,204.2 | 41,092.20 | (667,117.3, | Yes
875,420.3)

Apr2006 | 831,343.0| 777,010.6 | 54,332.40 | (672,631.0, | Yes
897,587.9)

May 2006 | 1,149,851.0 | 1,076,711.5 | 73,139.50 | (928,812.8, | Yes
1,248,160.8)

Jun 2006 | 1,725,335.0 | 1,677,050.7 | 48,284.30 | (1,441,490.1 | Yes
1,951,195.3)

Jul 2006 | 2,294,960.0 | 2,285,811.7 | 9,148.30 | (1,959,646.5 | Yes
2,666,264.0)

Aug 2006 | 2,111,749.0 | 2,210,867.4 | 99,118.40 | (1,890,954.0 | Yes
2,584,904.2)

Sep 2006 | 1,373,629.0 | 1,236,838.7 | 136,790.30 | (1,055,342.9 | Yes

10



1,449,547.8)

Oct2006 | 923,754.0 | 862,292.1 | 61,461.90 | (734,083.9, | Yes
1,012,891.9)

Nov 2006 | 681,779.0 | 654,746.9 | 27,032.10 | (556,106.7, | Yes
770,883.6)

Dec 2006 | 852,780.0 | 795,149.4 | 57,630.60 | (673,795.1, | Yes
938,360.2)

Jan 2007 | 526,722.0| 537,090.1 | 10,368.10 | (448,761.7, | Yes
642,803.8)

Feb 2007 | 586,835.0 | 657,175.8 | 70,340.80 | (5459265, | Yes
791,095.6)

Mar 2007 | 672,289.0 | 764,075.9 | 91,786.90 | (630,786.3, | Yes
925,530.5)

Apr2007 | 733,374.0| 751,871.8|18,497.80 | (617,374.8, | Yes
915,669.4)
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4.0 General Discussion

In the tourism industry, weather and economy have significant impacts when
forecasting. As Canada’s tourism industry largely relies on the US, the industry is also
largely affected by American economic conditions. Some major economic shocks that
have shaped the tourism industry in the past include:

- Policy changes for border crossing (passport requirements)

- The terrorist attacks of 9/11

- The US Dollar exchange rate
With mix of unpredictable and predictable variables, as mentioned above, a forecasting
in the tourism industry may indeed be more difficult than first imagined. This is the
biggest limitation of our model. Even though the data accounts for these occurrences
with spikes and dips, there is really no way quantify shocks previously observed.
Therefore we cannot forecast tourist numbers with absolute certainty taking into

account current economic conditions.
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Appendices

Appendix A: List of Figures

Figure 2A: A time series plot the transformation of our data (Log and Square Root)
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Figure 2B: A Time series plot of seasonally differenced and logged & seasonally differenced and
square rooted data
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Figure 5A: Residual Plots
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Figure 5B: ACF, PACF of residuals and Runs Test for SARIMA (4,1,1) * (5,1,3)
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Figure 7: QQ plot for SARIMA (4,1,1) * (5,1,3)
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» runs.test (modelZfreziduals)

iR

[1] 188

$E

[1] 195.4957

fz
[1] -1.057547

fp.value.lt
[1] 0.1450625

Shapiro-Wilks Test

> shapiro.test (modelZiresiduals)
Shapiro-Wilk normality test

data: modelziresiduals
W= 0.95343, p-wvalus = 0.000Z74Z2
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Appendix B: Outputs for Different Models Considered

MODEL 1

> modell
Call:
arimal(x = logitmaun), order = (4, 1, 1), seassonal = listiorder = c(3, 1, 5,
period = 12))
Coefficients:
arl arl ard ard mal sarl saril sar3d smwal smal smald smad smalb
0.196z 0.Z744 0.1201 -0.1015 -0.8855 -0.0361 -0.38550 -0.2031 -0.4937 0.183% 0.0563 -0.1019 0.2380
s.e. 0.0524 0.0607 0.0572 0.0565 0.2189 0.0552 0.0349 0.0396 0.0050 0.0315 0.0187 0.0385 0.0068
sigma®Z estimated as 0.003916: log likelihood = 528.192, aic = -1028.38
F MOCE L
Call:
arimal(x = logi(tnum), order = ci4, 1, 1), seasonal = list{order = (5, 1, 31,
period = 12}
Coefficients:
arl ara ard ard mal sarl sard sard sard sars smal Smal smad
0.30z27 0.2305 0.045% -0.1117%7 -0.87 -0.1740 -0.6577 -0.5542 -0.4554 -0.0366 -0.4563 0.4355 0.2953
s.e. 0.0061 0.0194 Nall Nall Mall 0.0244 0.0134 0.014z2 0.0243 0.01585 0.0036 0.0056 0.00687
sigmwa™2 estimated as 0.003367: log likelihood = 549.54, aic = -1071.08
Warning message:
In sgrt(diag(xfvar.coef)) : NaNs produced
F modeld
Call:
arimalix = log(tnum), order = (4, 1, 1), sSeasonal = list(order = ci4, 1, 3),
period = 12))
Coefficients:
arl arz arsd ard mal sarl sara sari3 sar4 smwal sSwaz Swad
0.2732 0.2251 0.0644 -0.1022 -0.8620 -0.2738 -0.5971 -0.6104 -0.5092 -0.3133 0.3352 0.3915
s.e. 0.0504 0.0600 0O.0555 0.0535 0.2143 0.0355 0.0316 0.031z2 HNall 0.0008 0.000% 0.0031
sigmwa™2 estimated as 0.00342: log likelihood = 547.03, aic = -1068.07
Warning message:
In =qgrt(diag(=x§var.coef)) HNal=s produced
> modeld
Call:
arimal(x = logi{tnum), order = c(4, 1, 1), seasonal = listiorder = c(3, 1, 4},
period = 1Z2))
Coefficients:
arl ara arsd ar4d mal sarl sard Zard smal Smad Smad smad
0.2558 0.2426 0.0629 -0.0%968 -0.8733 0.2100 -0.3932 -0.6055 -0.7696 0.3565 0.4495 -0.Z24679
=z.e. 0.0524 0.0630 0.0567 0.0540 0.2494 0.0093 0.0357 0.0005 0.0305 0.0175 0.01z20 0.0295
sigma*: estimated as 0.003607: log likelihood = 539.25,; aic = -1052 .49
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MODEL 5

> models

Call:
arimal(x = log(tnum), order = (4, 1, 1), sSeasonal = listiorder = c(6, 1, 3],
period = 12))

Coefficients:
arl ara arsi ard mwal sarl sari sarid sar4d sars sart smal Smas
0.2145 0.2&%2 0.0855 -0.095% -0.8520 -0.21%% O0.0737 O0.0310 0.0339 0.38691 O0.414% -0.3752 -0.3992
=s.e. 0.0446 0.0233 0.0210 0.0186 0.1133 0.0231 Nal 0.0134 Nal 0.0302 0.0731 0.0573 0.0499
Smad
0.0429

=.e. 0.0503

sigmat2 estimated as 0.003497: log likelihood = 544,14, aic = -1058.28
Warning message:
In sgrt{diag(x§var.coef)) : NaMNs produced

MODEL 6

> modeld

Call:
arimalix = log({tnwn), order = (4, 1, 1), seasonal = list(order = o5, 1, 4),
period = 12))

Coefficients:
arl arz ar3 ard mwal zarl sara sari3 sar4 sars smal Srad
0.3143 0.2513 0.0733 -0.1072 -0.8900 -0.8370 -0.8266 -0.4389 -0.9000 -0.1500 O.0825 0.3063
s.e. 0.051% 0.0581 0.0569 0.0556 0.z2315 0.0563 0.0559 0.0595 0.03058 0.0555 0.0287 0.0377

Smad smad

-0.0905 0.6751

=.e. 0.0z216 0.0217
si_g'ma*z estimated as 0.003156: log likelihood = 556.73, aic = -1083.45

Appendix C: Prediction

> prediction2
Time Series:
start = 4089
End = 432
Frecguency = 1
[1] 565847.3 684700.6 7e4z204.2 77?97010.6 1076711.5 1677050.7 2285811.7 Z210867.4 1236838.7
[10] &8e2z592.1 A54746.9 795149.4 537090.1 A/57175.8 764075.9 751871.8 1087091.6 1669711.7
[19] 2253932.9 2292375.7 1182953.2 &745877.3 647369.1 780357.6
» lowerboundZ <- exp(predicti4ipred - 1.96%predictidise)
> lowerboundz
Time Series:
Start = 409
End = 432
Fregquency = 1
[1] E0E047.8 &049239.1 &67117.3 672631.0 0925812.5 1441490.1 1959¢46.5 1590954.0 1055342.9
[10] 734083.% 556106.7 673725.1 445761.7 5459:26.5 630786.3 617374.8 889105.1 13602453.0
[19] 1829f598.5 1854533.3 953807.5 703086.2 518550.4 623054.6
> upperboundz<-exp (predicti4ipred + 1.96%predictz4dse)
> upperboundzZ
Time Series:
Start = 409
End = 432
Frecguency = 1
[1] 633%g6.0 774973.7 &75420.3 8§97557.9 1245160.58 1951105.3 Z666264.0 2554904.2 1449547.3
[10] 101zZ891.5 770833.6 938360.2 642803.8 791095.6 O925530.5 915669.4 1329165.8 Z049580.1
[1?] 2776530.3 2833513.1 1467149.0 1085643.7 805189.1 8277375.0
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Appendix D: Regression Models

Regression Models
Indicator Variable Model with a Time Component
regData<-read.csv("updatedData.csv", header = TRUE)

MONTH<-MONTHI[1:408]
YEAR<-YEAR[1:408]

TIME<-seq(1,408,1)

JAN<-MONTH==1
FEB<-MONTH==2
MAR<-MONTH==3
APR<-MONTH==4
MAY<-MONTH==5
JUN<-MONTH==6
JUL<-MONTH==7
AUG<-MONTH==8
SEP<-MONTH==9
OCT<-MONTH==10
NOV<-MONTH==11
DEC<-MONTH==12

indModel<-
ImM(NUM~JAN+FEB+MAR+APR+MAY+JUN+JUL+AUG+SEP+OCT+NOV+TIME)

summary(indModel)

Call:
Im(formula = NUM ~ JAN + FEB + MAR + APR + MAY + JUN + JUL +
AUG + SEP + OCT + NOV + TIME)

Residuals:
Min  1Q Median 3Q Max
-384519 -67208 -20142 54981 699398

Coefficients:

Estimate Std. Error t value Pr(>[t|)
(Intercept) 434876.21 27057.05 16.073 < 2e-16 ***
JANTRUE -177446.65 34025.40 -5.215 2.97e-07 ***
FEBTRUE  -98419.81 34024.32 -2.893 0.00403 **
MARTRUE  -27090.57 34023.35 -0.796 0.42637
APRTRUE  80204.65 34022.48 2.357 0.01889 *
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MAYTRUE  493908.07 34021.71 14.517 < 2e-16 ***
JUNTRUE  991328.61 34021.05 29.139 < 2e-16 ***
JULTRUE  1794789.92 34020.49 52.756 < 2e-16 ***
AUGTRUE 1768556.75 34020.03 51.986 < 2e-16 ***
SEPTRUE  705350.56 34019.67 20.734 < 2e-16 ***
OCTTRUE  266969.80 34019.41 7.848 4.02e-14 ***
NOVTRUE  -28095.22 34019.26 -0.826 0.40938
TIME 738.40  58.98 12.519 < 2e-16 ***

Signif. codes: 0 “***”0.001 “*** 0.01 “*> 0.05°.>0.1 “’ 1

Residual standard error: 140300 on 395 degrees of freedom
Multiple R-Squared: 0.9602, Adjusted R-squared: 0.959
F-statistic: 794.8 on 12 and 395 DF, p-value: < 2.2e-16

acf(indModel$residuals)
Series indModel$residuals
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While the indicator regression model has good explanatory properties (R-Squared is
high) and most of the indicator variables are significant, the residual standard error is
very high, 140300 compared to 0.003367 for our chosen model2. Meanwhile, the acf plot
of the residuals shows that there is a high positive correlation between the error terms at
all lags.
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Indicator Model with a Year Component

indModel<-
IM(NUM~JAN+FEB+MAR+APR+MAY+JUN+JUL+AUG+SEP+OCT+NOV+YEAR)
summary(indModel)

Call:
Im(formula = NUM ~ JAN + FEB + MAR + APR + MAY + JUN + JUL +
AUG + SEP + OCT + NOV + YEAR)

Residuals:
Min  1Q Median 3Q Max
-384519 -67208 -20142 54981 699398

Coefficients:

Estimate Std. Error t value Pr(>[t|)
(Intercept) -1.703e+07 1.408e+06 -12.098 < 2e-16 ***
JANTRUE -1.856e+05 3.402e+04 -5.455 8.66e-08 ***
FEBTRUE -1.058e+05 3.402e+04 -3.110 0.00201 **
MARTRUE -3.374e+04 3.402e+04 -0.992 0.32196
APRTRUE  7.430e+04 3.402e+04 2.184 0.02955 *
MAYTRUE  4.887e+05 3.402e+04 14.367 < 2e-16 ***
JUNTRUE  9.869e+05 3.402e+04 29.010 < 2e-16 ***
JULTRUE  1.791e+06 3.402e+04 52.650 < 2e-16 ***
AUGTRUE  1.766e+06 3.402e+04 51.900 < 2e-16 ***
SEPTRUE  7.031e+05 3.402e+04 20.669 < 2e-16 ***
OCTTRUE  2.655e+05 3.402e+04 7.804 5.42e-14 ***
NOVTRUE -2.883e+04 3.402e+04 -0.848 0.39719
YEAR 8.861e+03 7.078e+02 12.519 < 2e-16 ***

Signif. codes: 0 “***’0.001 “*** (0.01 “*> 0.05 . 0.1 * 1
Residual standard error: 140300 on 395 degrees of freedom

Multiple R-Squared: 0.9602, Adjusted R-squared: 0.959
F-statistic: 794.8 on 12 and 395 DF, p-value: < 2.2e-16
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acf(indModel$residuals)

Series indModel$residuals
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Again, while this variation of the indicator model has good explanatory properties, it is
no better than the first regression model and still has a very high standard error. The
residuals also seem to be highly correlated.

Sinosoidal Model

cosl<-cos(2*pi*MONTH/12)
sinl<-cos(2*pi*MONTH/12)
sinModel<-Im(NUM-~cos1+sinl)
summary(sinModel)

Call:
Im(formula = NUM ~ cosl + sinl)

Residuals:
Min  1Q Median 3Q Max
-925240 -377157 -2416 239518 1527486

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>[t|)

(Intercept) 1066717 25218 42.30 <2e-16 ***

cosl -664513 35663 -18.63 <2e-16 ***
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sinl NA NA NA NA
Signif. codes: 0 “***’0.001 “*** 0.01 “** 0.05 > 0.1 < 1
Residual standard error: 509400 on 406 degrees of freedom

Multiple R-Squared: 0.461,  Adjusted R-squared: 0.4596
F-statistic: 347.2 on 1 and 406 DF, p-value: < 2.2e-16
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The sinusoidal model proves to be both a poor fit and has a high standard error.
Moreover, the residuals seem to be highly correlated and seem to display a seasonal
pattern.
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