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Introduction

This project takes an analytical look at the time series data for the historical production of beer in
Australia. The goal is to analyze the data, predict what type of time series model may best fit the data,
implement different model scenarios, and diagnose which model would be most appropriate to forecast
Australian beer production in the future.

Data

The data used for this project was taken from Time Series Data Library, put together by Rob Hyndman
and hosted at http://robjhyndman.com/TSDL/. The data for the production of beer in Australia, by
quarter, was gleaned from the Australia Bureau of Statistics. The data has 154 points, spanning from 1%
Quarter 1956 through 2" Quarter 1994. The data is presented in Mega-Liters. A summary of the basic
statistics of the data are shown in Table 1, below.

Data Statistics (Mega-Liters)
Minimum 212.80
Quartile 1 323.78
Median 427.45
Quartile 3 467.58
Maximum 600.00
Mean 408.27
Standard Deviation 97.60

Table 1: Data Statistics



A plot of the time series data for quarterly beer production in Australia is shown in Figure 1.
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Figure 1: Time series plot of production of beer in Australia

The plot clearly shows that the production of beer is highly seasonal, with a spike at each 4™ quarterly
data point. There is an upward trend for the first 20 years that levels off somewhat at that point. |
produced scatterplots of the previous quarter’s production to the current quarter, and also a scatterplot
showing the seasonal lag of 4. They can be seen in Figures 2 and 3, respectively.
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Figure 2: Scatterplot of q vs. g-1 production



Lag = 4 Quarters
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Figure 3: scatterplot of q vs. g-4 production

The scatterplots show that there is a fairly strong positive correlation from quarter to quarter, and there
is a nearly linear correlation on the seasonal fourth lag.

To help determine what models to attempt to fit the data to, | also produced a correlogram of the
autocorrelation versus the lag. It shows that the data is highly autoregressive, with a distinct trend. The
trend is nearly linear and is similar to an autoregressive model with a very high phi factor.
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Figure 4: Correlogram



Models

After reviewing the data and the figures shown above, | decided to try fitting the data to an AR(1)
model, and AR(1), model, and a seasonal AR(1) model with a seasonal lag of 4.

Model 1: AR(1)

| fit the data to an AR(1) model of the form
Yi= Y1+ 6+ e

| used Excel’s Regression tool to regression the data values on the previous quarter’s data values. The
output of the tool is shown below:

Regression Statistics

Multiple R 0.7447
R? 0.5547
Adjusted R 0.5517
Std Error 65.2094
Observations 153
ANOVA
df SS MS F Sign. F
Regression 1 799863.39 799863.39 188.1028 2.571E-28
Residual 151  642092.25 4252.26
Total 152 1441955.65
Standard Lower Upper Lower Upper
Coefficients Error t Stat P-value 95% 95% 95% 95%
Delta 106.4209 22.6884 4.6905 6.052E-06 61.5931 151.2486 61.5931 151.2486
Phi 0.7410 0.0540 13.7150 2.571E-28 0.6342 0.8477 0.6342 0.8477

This yields § = 106.42 and ¢ = 0.7410. The R*= 0.55, which means approximately 55% of the trend is
explained by the lag 1 regression. The P-values for both § and ¢ are well below .001, indicating both are
significant to this model. The forecasting model would have the following equation:

Y. =0.7410Y., + 106.42 + e,

Figure 5 shows a graph of the actual beer production values compared to those predicted by this model,
while Figure 6 shows a graph of the residuals of the fitted value minus the actual value. The graph
shows that the model is a fair approximator for the data series.
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Figure 5: Actual vs. Fitted AR(1),
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Figure 6: Residuals for Fitted AR(1);




Model 2: AR(1),

| fit the data to an AR(1), model of the form
Yi=Yes+ 6+ e

| used Excel’s Regression tool to regression the data values on the previous quarter’s data values. The
output of the tool is shown below:

Regression Statistics

Multiple R 0.9787
R? 0.9579
Adjusted R? 0.9576
Std Error 19.6647
Observations 150
ANOVA
df SS MS F Sign. F
1.102E-
Regression 1 1301344.35 1301344.35 3365.2463 103
Residual 148 57231.76 386.70
Total 149 1358576.11
Standard Lower Upper Lower Upper
Coefficients Error t Stat P-value 95% 95% 95% 95%
Delta 25.4850 6.8581 3.7160 2.863E-04 11.9325 39.0374 11.9325 39.0374
Phi 0.9493 0.0164 58.0107 1.102E-103 0.9169 0.9816 0.9169 0.9816

This yields & = 25.49 and ¢ = 0.9493. The R*= 0.96, which means approximately 96% of the trend is
explained by the lag 4 regression. The P-values for both § and ¢ are well below .001, indicating both are
significant to this model. The forecasting model would have the following equation:

Y:=0.9493Y4 + 25.49 + e,

Figure 7 shows a graph of the actual beer production values compared to those predicted by this model,
while Figure 8 shows a graph of the residuals of the fitted value minus the actual value. The graph
shows that the model is a very good approximator for the data series.
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Figure 7: Actual vs. Fitted AR(1),
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Figure 8: Residuals for Fitted AR(1),




Model 3: Lag 4 Seasonal AR(1),

| fit the data to an seasonal AR(1); model a seasonal lag of 4 of the form

Ye=b1Ye1 + PoYes +6 +ey

| used Excel’s Regression tool to regression the data values on the previous quarter’s data values. The
output of the tool is shown below:

Regression Statistics

Multiple R 0.9787
R? 0.9579
Adjusted R? 0.9573
Std Error 19.7294
Observations 150
ANOVA
df SS MS F Sign. F
Regression 2 1301356.35 650678.18 1671.62 7.91E-102
Residual 147 57219.75 389.25
Total 149 1358576.11
Standard Lower Upper Lower Upper
Coefficients Error t Stat P-value 95% 95% 95% 95%
Delta 24.9704 7.4785 3.3390 1.066E-03 10.1911 39.7497 10.1911 39.7497
Phil 0.0045 0.0254 0.1756 8.608E-01 -0.0457 0.0546 -0.0457 0.0546
Phi2 0.9460 0.0247 38.3079 2.214E-78 0.8972  0.9948 0.8972 0.9948

This yields & = 24.97, ¢, = 0.0045 and ¢, = 0.9460. The R?= 0.96, which means approximately 96% of the

trend is explained by the lag 4 seasonal AR(1) regression. The P-values for ¢, is well below 0.001
meaning it is very significant to the model, but the P-value for § is just above 0.001 and the P-value for

1 is well above 0.001, meaning they are not significant to the model. The forecasting model would

have the following equation:

Y. = 0.0045Y,, + 0.9460Y., + 24.97 + ¢;

Figure 9 shows a graph of the actual beer production values compared to those predicted by this model,

while Figure 10 shows a graph of the residuals of the fitted value minus the actual value. The graph

shows that the model is a good approximator for the data series.
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Figure 9: Actual vs. Fitted Lag 4 seasonal AR(1)
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Figure 10: Residuals for Fitted Lag 4 seasonal AR(1)




Model Fitting Analysis

To analyze which model is the best fit for the Australian beer production data series, | compared values
from the regression analysis, and also did some further statistical analysis. Specifically, | looked at the
adjusted R? values, the Durbin Watson Statistic and compared the Box Pierce Statistic to the Chi Squared
statistic for a Random Walk series.

The R? value is an output of the Excel Regression tool. The higher (closer to 1) that the R?value is, the
more of the time series is described by the parameters chosen. The adjusted R” value is the better

estimate, as it accounts for degrees of freedom in the model.

The Durbin Watson Statistic is defined by www.Investopedia.com as a number that tests the

autocorrelation in the residuals of a regression analysis. | calculated this statistic according to the excel
model provided by the Time Series course administrators. A value of 2 indicates that there is no
autocorrelation in the residuals of the model. A value of 0 indicates highly positive autocorrelations and
a value of 4 indicates highly negative autocorrelation. A model with the best fit would have a Durbin
Watson statistic near 2, indicating the residuals are random and could not be fixed by additional
parameters.

The Box Pierce statistic is defined by www.economics.about.com as a number used to determine if a

time series is nonstationary. A stationary process has residuals that are a white noise process. The ideal
Box Pierce statistic would be less that the corresponding Chi Squared value for a given significance level,
indicating a strong possibility of a white noise process.

| analyzed each of the three models according to these parameter. My results can be seen in Table 2,
below. All three models have a Durbin Watson statistic fairly close to 2, although the first model is
about twice as far form 2 as the other two models. The AR(1); model does not fit very well compared to
the other two models. The adjusted R%is much lower than the other models, and the Box Pierce statistic
is much higher than the X value for a 10% significance of the residuals being a white noise process. The
second model proves to be the best fit. The statistics for the second and third models are similar, but
the second model is a simpler model, and therefore should be used instead.

Adjusted Durbin Watson Box Pierce Reject Null Hypothesis
R? Statistic X? (10%) Q Statistic of Residuals = WNP
AR(1), 0.5518 2.142 173.655 1845.816 Yes
AR(1), 0.9576 1.924 170.432 122.584 No
Seasonal AR(1) 0.9579 1.930 170.432 121.709 No

Table 2: Statistical Analysis Summary
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Conclusion

The data time series of the production of beer in Australia can be fit to an AR(1) model with a lag of 4.
The lag of 4 accounts for the quarterly seasonality of the production values. This model has an R*value
of greater than 95%, meaning most of the trend of the data series can be explained by the model. The
Durbin Watson statistic for this model is close to 2, indicating that the residuals of the fitted model have
low autocorrelation and could be a white noise process. Likewise, the Box Pierce statistic is lower than
the corresponding X?value, again proving that the null hypothesis that the residuals are a white noise
process can not be rejected. This model could be an acceptable model to forecast future values for
quarterly beer production in Australia.
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