Julie Rachford Student Project Regression Analysis Winter 2012

Baskin Robbins Ice Cream Caloric Values

Introduction

One of my favorite desserts is ice cream. Therefore, I choose to perform a regression analysis that allows me to investigate what ice cream attributes are indicative of the calorie content of these tasty desserts. In my analysis, I employed the following seven (7) explanatory variables: sugar (g), saturated fat (g), total fat (g), cholesterol (g), sodium (mg), carbohydrates (g) and protein (g).

<u>Data</u>

I relied upon the data from the Baskin Robbins website to perform my analysis. The data can be found at the following website:

http://www.baskinrobbins.com/Nutrition/productlist.aspx?category=Ice%20Cream

I choose to utilize data from the classic ice cream flavors for the 2.5 oz serving size. The data I compiled can be found on the attached excel spreadsheet.

Equation and Variables

The equation and the 7 variables for the full model are:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7$$

Where: Y = calories

 α = intercept

 β_i = least squares coefficients

 $X_1 = sugar (grams)$

 X_2 = saturated fat (grams)

 X_3 = total fat (grams)

 X_4 = cholesterol (milligrams)

X₅ = sodium (milligrams)

 X_6 = carbohydrates (grams)

 X_7 = protein (grams)

Hypothesis

The null hypothesis is that all least squares coefficients are zero: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$

Data Analysis

I utilized the Regression data analysis tool in Excel to obtain the following regression statistics and ANOVA tables:

7 Variable Regression Full Model

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.971049188					
R Square	0.942936526					
Adjusted R Square	0.909649499					
Standard Error	4.498194855					
Observations	20					

ANOVA

	df		SS	MS	F
Regression		7	4012.194917	573.1707024	28.32744822
Residual		12	242.8050834	20.23375695	
Total		19	4255		

	Coefficients	Standard Error	t Stat	P-value
Intercept	38.12856667	24.9773286	1.526527007	0.152795844
Sugar(g)	-0.820917233	1.683613484	-0.487592456	0.634624958
Saturated Fat (g)	3.487268326	2.053836987	1.697928486	0.11527863
Total Fat (g)	8.304910949	1.565872675	5.30369492	0.000187209
Cholesterol (mg)	-0.076815849	0.360073112	-0.213334034	0.834647878
Sodium (mg)	0.149832585	0.085750836	1.747301744	0.106101727
Carbohydrates (g)	2.750345948	0.962489623	2.857533091	0.01441972
Protein (g)	-3.578552457	3.925335288	-0.911655233	0.37990008

Model Equation:

 $Y = 38.1286 - 0.8209X_1 + 3.4873X_2 + 8.3049X_3 - 0.07682X_4 + 01498X_5 + 2.7503X_6 - 3.5756X_7$

The R² of the full model is 94.2937% demonstrating that the full model a good indicator of determining calories based on the provided nutritional facts. However, given that cholesterol has the highest p-value and one of the lowest t stat values, it appears that cholesterol may not be a great explanatory variable for this model. Due to this, I will remove cholesterol from the model, and rely upon the six (6) remaining variables.

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.970937746				
R Square	0.942720106				
Adjusted R Square	0.916283231				
Standard Error	4.329913396				
Observations	20				

ANOVA

	df		SS	MS	F
Regression		6	4011.27405	668.545675	35.65928768
Residual		13	243.7259503	18.74815002	
Total		19	4255		

	Coefficients	Standard Error	t Stat	P-value
Intercept	35.20642953	20.10512437	1.751117221	0.103469146
Sugar(g)	-0.818782656	1.62059939	-0.505234459	0.621850721
Saturated Fat (g)	3.309413213	1.806798528	1.831644847	0.090008616
Total Fat (g)	8.250811448	1.48739457	5.547157167	9.42993E-05
Sodium (mg)	0.147644241	0.081950106	1.801635742	0.094829616
Carbohydrates (g)	2.808530865	0.888506082	3.160958513	0.007511479
Protein (g)	-3.250220342	3.475943392	-0.935061356	0.366801682

Model Equation:

 $Y = 35.2064 - 0.8188X_1 + 3.3094X_2 + 8.2508X_3 + 0.1476X_5 + 2.8085X_6 - 3.2502X_7$

The R² of this model is 94.2720%, which is near our initial model R² of 94.2937% demonstrating that this model is also a good indicator of determining calories based on the provided nutritional facts. However, this model produced a slightly lower standard error (4.3299 vs. 4.4982) and an increased F-statistic (35.6593 vs. 28.3274) reflecting the fact that the six (6) variable model is a better fit than the full model. Again, given that sugar has the highest p-value and one of the lowest t stat values, it appears that the model may produce a better result if this explanatory variable is eliminated. Therefore, I will remove sugar from the model, and rely upon the five (5) remaining variables.

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.97035838					
R Square	0.941595385					
Adjusted R Square	0.920736594					
Standard Error	4.21317354					
Observations	20					

ANOVA

	df		SS	MS	F
Regression		5	4006.488362	801.2976724	45.14141676
Residual	1	L4	248.5116379	17.75083128	
Total	1	L9	4255		

	Coefficients	Standard Error	t Stat	P-value
Intercept	27.53170464	12.81559238	2.148297467	0.04967426
Saturated Fat (g)	2.901799362	1.573083324	1.844657125	0.086347176
Total Fat (g)	8.512510988	1.356697655	6.274434806	2.04113E-05
Sodium (mg)	0.127463727	0.069627618	1.830648962	0.088518551
Carbohydrates (g)	2.487979298	0.605244405	4.110701853	0.001059756
Protein (g)	-2.900968918	3.314669583	-0.875190979	0.396237027

Model Equation:

$$Y = 27.6317 + 2.902X_2 + 8.5125X_3 + 0.1274X_5 + 2.4880X_6 - 2.9010X_7$$

The R² of this model is 94.1595%, which is slightly less than the six variable model R² of 94.2720% demonstrating that this model is also a good indicator of determining calories based on the provided nutritional facts. However, this model produced an even lower standard error (4.2132 vs. 4.3299) and larger F-statistic (45.1414 vs. 35.6593) reflecting the fact that the five (5) variable model is a better fit than both the six (6) variable model and the full model. Again, given that protein has the highest p-value and the lowest t stat value of the remaining variables, it appears that the model may produce an even better result if this explanatory variable is eliminated. Therefore, I will remove protein from the model, and rely upon the four (4) remaining variables.

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.968710477				
R Square	0.938399988				
Adjusted R Square	0.921973318				
Standard Error	4.180175844				
Observations	20				

ANOVA

	df	SS	MS	F
Regression	4	3992.891949	998.2229872	57.12661147
Residual	15	262.1080513	17.47387009	
Total	19	4255	j	

	Coefficients	Standard Error	t Stat	P-value
Intercept	27.03922832	12.70295745	2.128577414	0.050272135
Saturated Fat (g)	2.996427188	1.557071845	1.924398799	0.07348764
Total Fat (g)	7.580010992	0.833289515	9.096491502	1.71099E-07
Sodium (mg)	0.104163478	0.063832873	1.631815611	0.123529861
Carbohydrates (g)	2.562609691	0.594514185	4.310426489	0.000618694

Model Equation:

 $Y = 27.0392 + 2.9964X_2 + 7.5800X_3 + 0.1041X_5 + 2.5626X_6$

The R² of this model is 93.8400%, which is slightly less than the five variable model R² of 94.1595% demonstrating that this model is also a good indicator of determining calories based on the provided nutritional facts. However, this model produced an even lower standard error (4.1802 vs. 4.2132) and larger F-statistic (57.1266 vs. 45.1414) reflecting the fact that the four (4) variable model is a better fit than the three previous run models. Again, given that sodium has the highest p-value and the lowest t stat value of the remaining variables, it appears that the model may produce an even better result if this explanatory variable is eliminated. Therefore, I will remove sodium from the model, and rely upon the three (3) remaining variables.

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.963049668			
R Square	0.927464663			
Adjusted R Square	0.913864287			
Standard Error	4.392023026			
Observations	20			

ANOVA

	df		SS	MS	F
Regression		3	3946.36214	1315.454047	68.19404699
Residual	1	L6	308.6378602	19.28986627	
Total	1	L9	4255		

	Coefficients	Standard Error	t Stat	P-value
Intercept	18.13518164	12.05268678	1.504658834	0.151895566
Saturated Fat (g)	2.612114339	1.617160762	1.615247167	0.125801706
Total Fat (g)	8.160520862	0.791724858	10.30726871	1.79991E-08
Carbohydrates (g)	3.234497321	0.450587385	7.178401855	2.19587E-06

Model Equation:

 $Y = 18.1352 + 2.6121X_2 + 8.1605X_3 + 3.2345X_6$

The R² of this model is 92.7465%, which is slightly less than the four variable model R² of 93.8400% demonstrating that this model is also a good indicator of determining calories based on the provided nutritional facts. Although, this model produced a faintly higher standard error (4.3920 vs. 4.1802), the F-statistic increased (57.1266 vs. 45.1414) reflecting the fact that the three variable model is a better fit than the four previous run models. Again, given that saturated fat has the highest p-value and the lowest t stat value of the remaining variables, it appears that the model may produce an even better result if this explanatory variable is eliminated. Therefore, I will remove sodium from the model, and rely upon the two (2) remaining variables.

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.956889107			
R Square	0.915636763			
Adjusted R Square	0.905711676			
Standard Error	4.595173766			
Observations	20			

ANOVA

	df	SS	MS	F
Regression	2	3896.034427	1948.017214	92.25478744
Residual	17	358.9655729	21.11562194	
Total	19	4255		

	Coefficients	Standard Error	t Stat	P-value
Intercept	23.20007845	12.17593794	1.905403803	0.073784063
Total Fat (g)	8.838894273	0.702195048	12.58752009	4.82664E-10
Carbohydrates (g)	3.36263787	0.464064814	7.246052208	1.36699E-06

Model Equation:

 $Y = 23.2001 + 8.8389X_3 + 3.3626X_6$

The R² of this model is 91.5637%, which is slightly less than the three variable model R² of 92.7465% demonstrating that this model is also a good indicator of determining calories based on the provided nutritional facts. Although, this model produced a faintly higher standard error (4.5952 vs. 4.3920), the F-statistic increased significantly (92.2548 vs. 57.1266) reflecting the fact that the two variable model is a better fit than the five previous run models. The p-values for the remaining explanatory variables are very close to zero, allowing us to reject the null hypothesis.

Conclusion

Beginning my regression analysis with sugar, saturated fat, total fat, cholesterol, sodium, carbohydrates and protein, I eliminated explanatory variables one by one that did not appear to be a good fit with the model. Based on the results of the six regression analysis performed, I determined that the equation with two explanatory variables in which fat is the biggest contributor to calories provides the best fit.

$$Y = 23.2001 + 8.8389X_3 + 3.3626X_6$$

Where: X_3 = total fat (grams)

 X_6 = carbohydrates (grams)

The R² values for this equation is high (91.5637%), the F- statistic was the highest of all the models, and the p-values of the remaining variables were very close to zero.