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1 Background

In recent years, energy shortage has become a prominent global issue. One thing is the
shortage of electricity. To avoid wasting electricity and achieve efficient allocation of
resources, it is important that supply and demand of electricity keep balance. Like
economic development with inevitable fluctuations in long-term growth trend, electricity
demand also shows a cyclical fluctuation. Therefore, we should try to accurately
understand the long term electricity demand trend, find a good model to fit it and finally

forecast the demand to avoid power shortage and power surplus situation happens.

As Hong Kong is an international financial center and modern international metropolis,
high electricity demand for energy is not in doubt. It is particularly vital for the Hong
Kong government to manage electricity supply efficiently and make appropriate plan,
which means neither wasting resources due to excess supply of electricity nor hindering
the development of economy in Hong Kong attributed to the shortage supply of

electricity.

| just focus on the business electricity consumption to understand the regular pattern hint
in history data and find future trends by establishing of effective mathematical model

using time series analysis.

2 Description of the Dataset

Figure 2.1 provides the data of business electricity consumption in Hong Kong from the
year January 2000 to September 2011from Census and Statistics Department of Hong
Kong and figure 2.2 is the line chart of it.

It can be seen from the figure 2.2, electricity consumption over time shows a slow
upward trend, from 2000 January 5612 September 9338 2011. There is an obvious
seasonal trend every year. It keeps high from June to September, when the temperature is
very high during these months. After that, the consumption begins to drop slowly until

the February in next year, when it starts to rebound.



Figure 2.1 Business Electricity Consumption in Hong Kong from the
Year January 2000 to September 2011 (Unit: 10"J)

onth

Yeu 1 2 3 4 5 6 7 8 9 10 11 12

2000 | 5612 | 5101 | 6465 | 5972 | 7016 | 7677 | 7741 | 8042 | 7737 | 7501 | 6513 | 5969

2001 | 6052 | 5451 | 6019 | 6262 | 7580 | 7739 | 8026 | 8294 | 8028 | 7736 | 6879 | 6147

2002 | 6094 | 5555 | 5921 | 7202 | 7799 | 8014 | 8610 | 8490 | 8167 | 7947 | 6962 | 6478

2003 | 6142 | 5795 | 6212 | 6674 | 7749 | 7932 | 8833 | 8838 | 8440 | 8312 | 7231 | 6678

2004 | 6247 | 5780 | 6423 | 7218 | 7684 | 8543 | 9138 | 8861 | 8895 | 7931 | 7469 | 7066

2005 | 6403 | 5982 | 6165 | 7173 | 8243 | 8868 | 8961 | 9165 | 9184 | 8545 | 7814 | 6837

2006 | 6284 | 5820 | 7002 | 7523 | 8632 | 8863 | 9663 | 9482 | 8717 | 8485 | 7823 | 7075

2007 | 6471 | 6128 | 7230 | 7305 | 8549 | 9510 | 10428 | 9308 | 8717 | 8690 | 7493 | 7327

2008 | 7129 | 5979 | 6897 | 7991 | 8780 | 8932 | 9566 | 9338 | 9336 | 8837 | 7650 | 7238

2009 | 6800 | 6490 | 7429 | 7445 | 8538 | 9484 | 10038 | 9885 | 9512 | 8745 | 7513 | 6977

2010 | 6975 | 6396 | 7716 | 7494 | 8685 | 9458 | 10186 | 10043 | 9416 | 8576 | 7494 | 7445

2011 | 7083 | 5916 | 7136 | 7502 | 9048 | 9862 | 10097 | 10218 | 9338

Figure 2.2 Line Chart of Business Electricity Consumption in Hong Kong from the
Year January 2000 to September 2011 (Unit: 10*J)
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3 Model Fitting and Diagnostics

In this part, we try to use five methods to analyze the data, including simple exponential
smoothing, winter’s multiplicative, additive decomposition, multiplicative decomposition
and ARIMA model.

3.1 Simple Exponential Smoothing



The simple exponential smoothing method is usually used to fit data on the condition that
the average of it is not change dramatically. It supposes that the more recent data has
more effects on the current and do the fitting process by continually revising an estimate
or forecast by accounting for more recent changes or for fluctuations in the data. The

generally form of itisx, =b+¢,, where ¢, is the random component having mean 0 and
variance s’ . Since the average electricity consumption is changing very slowly over time,

we can try to use the simple exponential smoothing method to deal with the data. After
using the Simple Exponential Smoothing function of the SPSS, we get the following

results.
Figure 3.1.1 Hypothesis Testing Results of Parameter «

Estimate | SE t Sig.

Alpha (Level) | 1.000 |.085 11.786|.000

Figure 3.1.2 Hypothesis Testing Results of significance of model

Model Fit statistics | Ljung-Box Q(18) | Number of

RMSE Statistics | DF | Sig. | Outliers

685.763 504.183 | 17 |.000 0

From figure3.1.1, the best value for parameter ¢ is 1, and according to the hypothesis

testing, the value is significant, which means the simple exponential smoothing model
should be x,,, = X, . Actually it is na'we model. It shows that the consumption in this
month should be predicted as the same the former month usage. From figure 3.1.2,
however, the significance of Ljung-Box Q(18), the hypothesis testing statistic of ¢, , is 0,
which means ¢, is not with mean 0 and variance o?. It indicates that the Simple

Exponential Smoothing model is not suitable for fitting this time series. Probably because
the seasonal effects are very strong compared with the linear trend, and the data

fluctuates dramatically from it average value.

3.2 Winter’s Seasonal Multiplicative



From the discussion above, we know it is inappropriate to ignore the seasonal
characteristic of the data and, simply base on the linear trend to build the model. As
showed in the figure, the data is a seasonal data and as the average level of the series
increases, the amplitude of the seasonal pattern also increases. We can consider using the
winter’s seasonal multiplicative method. Winter’s multiplicative method is an
exponential smoothing approach to deal with cyclical data and its pattern can be

described by x, = ( + ft)c, + ¢, , where « is the permanent component, g is a linear
trend component, c, is the multiplicative seasonal factor and ¢, is the usual random error

component. By using the SPSS with the data, we get the following figures.
Figure 3.2.1 Hypothesis Testing Results of Parameter

Model Estimate | SE t | Sig.

Alpha (Level) | .075 |.030|2512|.013

USAGE-Model_1 | Gamma (Trend) | .001 |.002| .218 |.828

Delta (Season) 176 |.071|2.486|.014

Figure 3.2.2 Hypothesis Testing Results of significance of model

Model Fit statistics Ljung-Box Q(18) | Number of

RMSE | Normalized BIC | Statistics | DF | Sig. | Outliers

253.818 11.179| 21.743| 15].115 0

The tstatistics of o and c,are 2.512 and 2.468, which conforms that they are both
significant compared with the tstatistics of g (0.218) that is not significant. The value of
a and c, in this model are 0.075 and 0.176. Moreover, the hypothesis testing of

&, (s19=0.115>0.05) indicates that &, is with constant mean and variance. The RMSE of

using this model is 253.818.

3.3 Additive Model
We have used the winter’s multiplicative smoothing model to handle the data based on
the assumption that the seasonal and trend components are varying over time. From the

figure the data changes seasonally over time and maybe the seasonal components are
4



constant. When suppose that the seasonal patterns are stable year after year, we consider
the decomposition approach, including additive model and multiplicative model. The
additive is consist of the sum of four parts-trend component, seasonal variation, cyclical
component and random error component, which can be generally described as following
equation, Y, =Tr, +S, +C, +¢,, Tr, is trend component, S, is seasonal variation, C, is
cyclical component and ¢, is random error component with constant 0 mean and variance.
Compared with additive model, the multiplicative model is also composed of the same
four parts by multiplying them instead of adding them up, which generally form

IsY, =Tr, xS, xC, x¢&,. Usually we treat the cyclical component as the regular fluctuation

in the trend component, however, since it takes 2 to 10 years to complete a cycle.

Firstly, we use the additive model. By the function of Decomposition in SPSS, we can get
the 12 seasonal factors S, in figure3.3.1, since the cycle is 12 predicted from the time plot.

3.3.1 Seasonal Factor

t 1 2 3 4 5 6 7 8 9 10 | 11 12

St | -1244. | -1842. | -1051 | -523 | 463 | 963 | 1515 | 1375 | 1038 | 586 | -378 | -903

For the trend partTr,, we use the seasonal adjusted data to do the linear regression and the

relevant results are showed in the figure3.3.2. From the table, we know the fitting

equation is Tr, =6835.24+12.576t . Since the Significance of the equation is almost 0

which is less than 0.05, we reject the hypothesis that the equation is not significant, which
means the fitting equation is appropriate and the linear trend is suitable. The figure3.3.3
gives the results of the coefficient hypothesis testing. The significance value of both
constant and coefficient of t are 0 which is less than 0.05. It confirms that the constant

and coefficient of t can not be ignored. They are both nonzero.

By combining the above two points, we can get the fitting equation of the additive model,
Y, =6835.24+12.576t + S, +¢,. The RMSE of the additive model is 267.87.



3.3.2 Results of Hypothesis Testing of Trend Equation

Model Sum of Squares | df | Mean Square F Sig.
Regression | 36946131.156 | 1 |36946131.156 | 507.591 | .000%
1| Residual | 10117413.753 |139| 72787.149
Total 47063544.910 | 140

3.3.3 Results of Hypothesis Testing of Constant and Coefficient of t in Trend Equation

Unstandardized Coefficients | Standardized Coefficients
Model t Sig.
B Std. Error Beta
(Constant) | 6835.240 45.684 149.621 | .000
1
t 12.576 .558 .886 22.530 |.000

3.4 Multiplicative Model

Now, we consider the multiplicative decomposition model. The ordinary form for this

model is Y, =Tr, xS, xC, x &,, Also we neglect the cyclical component and just focus on

the simplified multiplicative decomposition Y, =Tr, xS, x¢,. Through the SPSS, we get

the results showed in the following figures 3.4.1 and 3.4.2.
3.4.1 Seasonal Factor

t 1 2 3 4 5 6 7 8 9 10 11 | 12
S, (%) 84 |76.6|86.3|929|10.1| 112.2 | 119.1 | 1179 | 113.7 | 107.6 | 95.2 | 88.3
3.4.2 Results of Hypothesis Testing of Trend Equation
Model Sum of Squares | df | Mean Square F Sig.

Regression | 36379474.457 | 1 |36379474.457 | 545.062 | .000
1| Residual | 9277375.836 139 66743.711

Total | 45656850.293 | 140

3.4.3 Results of Hypothesis Testing of Constant and Coefficient of t in Trend Equation




Unstandardized Coefficients | Standardized Coefficients
Model t Sig.
B Std. Error Beta
(Constant)| 6837.166 43.746 156.292 |.000
1
t 12.480 .535 .893| 23.347|.000

Figure 3.4.1 gives the estimated 12 seasonal factorsS,. From figure3.4.2 and 3.4.3, we
know the trend part Tr, can be fitted as Tr, =6837.166+12.48t base on the linear

regression of seasonal adjusted data. For the significance hypothesis testing of the trend
equation, the Sig is approximately equal to O which is less than 0.05. It indicates that the
trend equation is significant. For the significance hypothesis testing of the constant and
coefficient of t in the equation, the Sig for both is almost 0 less than 0.05, which shows
that they are significant and can not be ignored. Then after the two testing we can get the

significant trend equationTr, = 6837.166 +12.48t . Finally, write down the fitting equation,
Y, =(6837.166+12.48t) xS, x &, . Substitute t and corresponding S, , we can get the fit

value for every month and it is showed in figure 3.4.5. The RMSE of the multiplicative

decomposition is 251.62.
Figure 3.4.5 Line Chart of Fitted Value and Observed Value
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3.5 ARIMA Model

ARIMA model is a very efficient approach to process data with trend and seasonal factor
cyclical feature. When the process is stationary, we can directly use the ARMA model to
handle it. While it is not stationary, we have some ways to transform the data to make it

stationary and then apply the model to the new stationary data. The methods used for
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making the data be stationary usually are ordinary difference and seasonal difference. If
the time plot of data shows an upward trend, it is obviously not stationary, since the mean
is not constant, under which condition we can consider doing one time difference on the
original data. Moreover, if the data has the seasonal feature, we can try to do one time
seasonal difference to make it stationary. So the general form of ARIMA model for
nonstationary data is ¢, (B)(1—B)‘ (1—-B*)"Z, =6,(B)a,, where 4, (B), 6,(B) are
polynomials with degree p andq in terms of B, B is the backward operator, a, is the

random error. For other typical data, there exists an obviously cycle. In this situation, we

should consider the mixed ARIMA model, which can be presented

as®,(B%)¢, (B)(1-B)’ (1-B°)°Z, =©,(B*)6,(B)a,, where ¢, (B), 6,(B) @,(B*)and
©, (B*)are polynomials with degree p,q, Psand Qs , respectively, B is the backward

operator, a, is the random error. The key important thing for ARIMA model is to find the
best parameters p,d,q, P, D,Q. The rule used for judge the best parameters is selecting

the minimum BIC among the several possible models.

Firstly, we get the ACF and PACF of original series in figure 3.5.1 and 3.5.2. Thus, we
know the time series is not stationary, since it displays an upward trend and seasonal
feature and strongly cyclical (according to the ACF plot). We do an ordinary difference
and a seasonal difference, and plot the time plot of the new time series ACF and PACF
showed in figure 3.5.3 and 3.5.4.

Figure3.5.1 ACF of Original Data Figure3.5.1 PACF of Original Data
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According to the new ACF and PACEF, it is clear that the new time series is stationary.

Therefore, it is reasonable to determine d =1,D=1 and p<4,q<2,Q=1P<1, and
consider begin with the model ARIMA(4,1,2)x(1,1,1),,. Through changing the value
of p,q, P,Q in the model, we select the eligible models which should meet the condition

that its fit residual is white noise, and model parameters are significant. After several
trials, we get three eligible models, and then do a square root and a natural log

transformation, respectively and summarize the model in the figure 3.5.5 below.

Figure 3.5.5 Summarize of Several Appropriate Model

ARIMA (2,],1)><(0,1,1)12 (2,1,2)><(0,1,1)12 (1,L 2)><(0,1,1)12 (2,1,1)><(1,1,O)12
BIC 11.379 11.388 11.378 11.449
(SR)BIC 11.362 11.369 11.371 11.455
(LOG)BIC* 11.377 11.377 11.390 11.483

*(SR)BIC and (Log)BIC represent the BIC of ARIMA model with original data transformed by square root
and natural log, respectively.

From the table, we select the model ARIMA(2,1,1)x(0,1,1),, with square root

transformation of its original data, whose BIC 11.362 is least compared with all other
model. Then display the hypothesis testing results of residual significance, parameters
significance and residual ACF and PACF in figure 3.5.6, 3.5.7 and 3.5.8.



Figure 3.5.6 Hypothesis Testing Results of significance of model

Model Fit statistics Ljung-Box Q(18)
Number of Outliers

RMSE | Normalized BIC | Statistics | DF | Sig.

271.877 11.362 14992 | 14 | .379 0

Figure 3.5.7 Hypothesis testing Results of parameters of ARIMA model

Estimate | SE t Sig.

Lagl| .113 |.095| 1.190 |.236
AR

Lag2| -.243 |.094|-2.596 |.011

Difference 1
USAGE-Model_1 | Square Root

MA Lagl| .903 |.053|17.100 |.000

Seasonal Difference 1

MA, Seasonal |[Lag1| .585 |.095| 6.134 |.000

From figure3.5.6, significance of Ljung-Box Q(18) statistic is 0.379 greater than 0.05,
which means we should accept the hypothesis that the transformed time series is
stationary. From figure 3.5.7, we can get the significant value of the model parameters.
Finally, we can determine the fitted equation of ARIMA(2,1,1)><(O,1,1)12’

(1+0.2438%)(1- B)(1-B"),/Z, = (1-0.585B")(1-0.903B)a,,

That is
(1- B+0.243B% —0.243B° — B + B** —0.243B" + 0.243515)\/2 =(1-0.903B —0.585B" + 0.528B"%)a,

The figure 3.5.9 shows the fit value and observed value under this optimum model. And
the RMSE of this model is 271.88. We use the line chart to draw the observed value and
fitted value in the figure in the figure 3.5.9.
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3.5.8 Redidual ACF and PACF of Preferred Model 3.5.9 Observed Value and Fitted Value

Residual ACF Residual PACF
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4 Selection of the Best Model

From discussion above, we used five models to fit usage of commercial electricity over
the January 2000 to September 2011. Now we choose the most preferred model from the
efficient four acquired models based on the minimum RMSE criteria. According to figure
4.1 below, multiplicative decomposition has the least minimum RMSE 251.62 compared
with the other three models. We can conclude that multiplicative decomposition is the
best model for fitting the practical time series.

Figure 4.1 Comparisons of Four Models’ RMSE

Winter’ Additive Multiplicative
MODEL | Multiplicative | Decomposition | Decomposition | ARIMA(2,1,1)x(0,11),,
RMSE 253.82 267.87 251.62 271.88
5 Summary

In this essay, we first use the simple exponential model to deal the data and find that it is
not suitable, since this model ignores the seasonal effect. Then we use the winter’s
multiplicative, additive decomposition, multiplicative decomposition and ARIMA model,
all of which consider the seasonal impact. Finally, based on the minimum RMSE criteria,
we choose the multiplicative decomposition model as the best model. Its expression is

Y, = (6837.166+12.48t) x S, x &,
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S, represents the seasonal variation and &, is random error component.

From the expression we know the fitted usage of electricity is determined by the product
of two parts-linear trend and seasonal component. The trend part is an increasing function
in terms of timet, which indicates that with the increasing of t, the business electricity
consumption will increase as well. When considering effect of the seasonal part executed
on the consumption, it is clear that the appearance of the plot will like a wave. So
integrating the two factors, we can conclude that the usage will keeping on an upward

trend with fluctuation in the near future.

When comparing and contrasting the fitted value to the observed value from the figure
3.4.5, we find that it fits pretty well except one point-January 2008. The reason for the
difference on January 2008 is the impact of continued extreme cold weather, compared
with the same month in previous, began from 24th January. Since the lasting colder
weather, people need to consume much more electricity to keep warm and comfortable,

which leads the actual usage is larger than the fitted value.

So in short, the multiple composition model can depict the data efficiently, and has
accurate prediction in most cases. The bias between fitted value and actual value appears
when some unusual events happen like the continuous abnormal weather. When the
government makes the power plan for the following month or year, they can apply this

model to forecast the future electricity consumption first.

6 Data Resource

The data of business electricity consumption in Hong Kong from the year January 2000
to September 2011analyzed in this essay can be downloaded from the website of Census
and Statistics Department of Hong Kong as following,
http://www.censtatd.gov.hk/hong_kong_statistics/statistical _tables/index_tc.jsp?charsetl
D=2
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