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Modeling the Daily Temperature of Antarctica

Purpose
Temperature fluctuations are something that affect each of our daily lives, so I thought it would be an interesting exercise to attempt to model the patterns of the weather using a time series model.  Obviously, there are strong seasonal patterns, as well as autoregressive properties in weather patterns, so that makes weather data a good candidate for ARIMA modeling.  After a recent (and amazing) trip to Antarctica, I decided that I would try to model the average daily temperatures of a place that is typically viewed as a cold, desolate place year-round, to see if a model could truly be fitted to such a place.
Initial Data Analysis and Adjustment

While there are quite a few weather and research stations spread across the continent, I chose to focus my project on the data from McMurdo Station, one of the larger and more-established bases in Antarctica, mostly because this station had the most reliable and complete set of data, providing daily temperatures from 1973 up to 2012.  Data was obtained from the National Climatic Data Center (http://lwf.ncdc.noaa.gov/oa/climate/climatedata.html).  Although the data was 99% complete, there were a few gaps of missing daily records, so I used liner interpolation to fill in the small gaps of missing values.  Based simply on the raw data, a graph of the average daily temperature in McMurdo Station, Antarctica appears below:
[image: image1.emf]Average Daily Temperature in McMurdo Station, Antarctica
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As you would expect, the temperature experiences seasonal fluctuations, with peaks in the summer (Dec-Feb) and troughs in the winter (Jun-Aug), ranging from approximately +35 F down to -30 F.  In order to utilize the data and attempt to fit an ARIMA model, we must both de-seasonalize and smooth the data.
Smoothing helps show the true underlying values while placing less emphasis on random fluctuations such as temporary jumps or drops in the daily temperatures that aren’t typically observed.  In order to smooth the data, I tested various N-day centered moving average models.  I first found the multi-year daily average, finding the average daily temperature for each day, based on the data from 1973 to 2012.  With these average daily temperatures, I then tested out 3 different sized center moving average models to cull fluctuations.  With a 7 day centered moving average, I still found the data to be too jagged with random fluctuations.  With a 21 day centered moving average, the resulting graph became too flat, lacking significant variation.  A 14 day centered moving average seemed to be the right size to maintain the true variation among the days while achieving a reasonable amount of smoothing.
Once smoothed, the data still shows inherent seasonal fluctuations due to the proximity to the sun and changing of seasons.  De-seasonalizing the data helps take care of the fluctuations, using either multiplicative or additive methods.  I attempted both methods; however, with average daily temperatures hovering above and below zero degrees, the multiplicative method produced spurious results due to very high adjustment factors, resulting in “de-seasonalized” values in the range of -90 F to 200 F, actually increasing the fluctuation of a few of the key values.  The additive method provided much better results.  This method assumes that the variance of the error terms is constant, which should be true, as the variance of the error term should be unrelated to the mean temperature.
In general, the seasonally adjusted average daily temperature is the actual temperature minus the average daily temperature for that day of the year, based on the historical data.  For instance, the smoothed daily temperature on January 1, 2011 of 27.3 F is adjusted by the daily smoothed historical average for that day of the year of 28.79 F.  Subtracting the results yields a de-seasonalized value of -1.06 F.  After the seasonal adjustments, the majority of values now lie within +20 F to -10 F.  
As years’ worth of data can become cumbersome, I have only shown the graphs below for the year 2011, though prior years would illustrate the same concepts. 

First, the graph of the unmodified 2011 average daily temperature is shown:
[image: image2.emf]Average Daily Temperature McMurdo Station, Antarctica 2011 (Unmodified)
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After 7 day centered moving averaging, the graph becomes smoother while still maintaining distinct variation:

[image: image3.emf]15 Day Centered Average Smoothed Daily Temperature
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After de-seasonalizing the data with the additive model, the inherent seasonal patterns of weather are removed:

[image: image4.emf]Smoothed and De-Seasonalized (Additive Method) Daily Temperature for 

McMurdo Station, Antarctica 2011

-40

-30

-20

-10

0

10

20

30

40

1/1/2011

1/15/20111/29/20112/12/20112/26/20113/12/20113/26/2011

4/9/2011

4/23/2011

5/7/2011

5/21/2011

6/4/2011

6/18/2011

7/2/2011

7/16/20117/30/20118/13/20118/27/20119/10/20119/24/201110/8/2011

10/22/2011

11/5/2011

11/19/2011

12/3/2011

12/17/201112/31/2011


Analysis of Adjusted Data
With the new data series, we shall attempt to determine if the series is stationary.  A cursory visual inspection of the data as charted above is the first step.  We attempt to note if there is any observable trend or shift of the mean over time.  If the mean does appear to be shifting over time, the series will not be stationary.  As the graph above appears fairly stable and a brief look at the unadjusted experience period also does not so any obvious trends, we can proceed with the next steps, believing that the data could be stationary.

To test this, we will use the sample autocorrelation.  The sample autocorrelation expresses how much an observed value depends on adjacent data points – how affected it is by previous values.  If a data series is stationary, this sample autocorrelation function will approach zero with rapidly declining values as the lags increase.  The graph below shows the sample autocorrelation function computed for lags 0 to 80, using the provided VBA macro to ease the computational burden of calculating the autocorrelation.  

[image: image5.emf]Sample Autocorrelation for lags 0 to 80
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As shown in the correlogram above, the sample autocorrelation quickly falls down to zero by the third lag, comes back up above zero after the ninth lag and then hovers around zero as the number of lags increase.  With a stationary process, you expect to see the sample autocorrelation fluctuating around and approaching zero as the number of lags increase, just as we see above with our data points.  The fact that the initial calculations are significantly larger than zero implies that we can say with a good degree of confidence that the actual autocorrelation coefficient will be greater than zero, telling us that the series is indeed stationary and not a white noise process.
Furthermore, the fact that the sample autocorrelation drops off so quickly down to zero tells us the data will most likely be able to be modeled by an autoregressive model in the order of one or two.

 Creating the Model – Parameter Estimation
After smoothing and de-seasonalizing the data, as well as computing sample autocorrelation of the data, we must now try to fit an autoregressive model to the data.  This autoregressive model will attempt to create a formula that will be able to describe a daily temperature value as a function of the data from the preceding days.  To create the most functional, yet simple, model, we will attempt to create a model using the smallest number of truly descriptive variables (i.e. preceding days) to preserve the simplicity of the model, in line with the idea of parsimony – only including additional variables if they truly increase the power of the model.  The correlogram of the sample autocorrelation suggests that the number of coefficients will likely by one or two.  In order to test the number of variables needed to create this model, I used Excel to run a linear regression of the actual temperature compared to the temperature for the day and the two days preceding, computing R Square and T-statistics.  The results are shown below:
Autoregressive Model of Order 1 – AR(1)

[image: image6.wmf]Regression Statistics
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Autoregressive Model of Order 2 – AR(2)
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Autoregressive Model of Order 3 – AR(3)
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There are a few key items to note from the regression analysis above.  The first statistic to notice is the t-statistic for each of the y_t-1 values.  The high t-statistic shows a strong correlation between the current day’s temperature and the previous day.  Also, the t-statistic for the values of y_t-2 and y_t-3 are relatively show, meaning that there is far less correlation between the current day’s temperature and the temperature two and three days ago, respectively shown in the AR(2) and AR(3) models.  Coupled with this low t-statistic, the P-values are rather high for the y_t-2 and y_t-3 values.  

Next, we look at the R Square and Adjusted R Square values.  The R Square values from AR(1) are significant, though the R Square and Adjusted R Square values for AR(2) and AR(3) are not significantly larger than those from the AR(1) model (in fact, they are almost the same).  Also, the F stat is highest for the AR(1) model.  Finally, just as the case with the R Square values, the standard error term does not significantly change as you move from AR(1) to AR(2) or AR(3).  

Given the above observations, we can suggest that the AR(1) model is a good fit to predict future temperature values, while the AR(2) and AR(3) models only give a very, very slightly better model in terms of predictive power.  As they add very little predictive ability to the model, we should pick the simplest model with strong predictive powers, so we will rely on the AR(1) model.

Durbin-Watson Test

In order to further test the model, we will perform the Durbin-Watson test to determine whether or not the residuals show any serial correlation.  The null hypothesis states that there is no serial correlation.  As the computed Durbin-Watson test statistics for each of the models are above dl and du, we can accept the null hypothesis in all three models, stating that there is no serial correlation of the residuals.

	Number of Variables
	Computed Durbin-Watson Statistic
	dl
	du
	Accept or Reject Null Hypothesis?

	1
	1.812006
	1.65
	1.69
	Accept

	2
	1.974933
	1.63
	1.72
	Accept

	3
	1.999256
	1.61
	1.74
	Accept


Box-Pierce Test

The Box-Pierce tests helps determine whether or not the residuals have been generated by a white noise process/that all of the autocorrelation coefficients are zero.  The null hypothesis states that the residuals are generated by a white noise process.  After computing the Box-Pierce statistics using the VBA Macro, we can see that the null hypothesis can be accepted for AR(1) but not for AR(2) or AR(3).

The following are the results for k=150:

	Number of Variables
	Computed Box-Pierce Q Statistic
	Critical Value at 10% Level
	Accept or Reject Null Hypothesis?

	1
	157.8861
	171.507
	Accept

	2
	185.7833
	171.507
	Reject

	3
	185.9277
	171.507
	Reject


Conclusion
After a long process of data analysis, smoothing, de-seasonalizing, regressing and checking, we can conclude that the most appropriate model to estimate the daily temperature at McMurdo Station, Antarctica is the AR(1) model.
The AR(1) model is then specified as:

Y t = 0.929547 * Y t-1 + 0.367295
Now that a model has been chosen and tested, we will perform one final check to see how the actual data compares to the AR(1) model, as shown below:

[image: image8.emf]Actual Temperatures vs. AR(1) Model Prediction
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As expected, the AR(1) predicted model follows closely along the graph of the actual values, showing that the proposed model is a fairly good fit.
In conclusion, the AR(1) model does a good job of predicting the expected daily temperatures at McMurdo Station, Antarctica based on the previous day’s temperature.  However, we must realize the scope of this project was fairly limited, and while this model does seem to be a good predictor, weather/temperature is very volatile and will always experience unexpected or sometimes unexplainable highs and lows, outside of any simple model’s predictive ability.  If weather prediction were this simple, meteorologists would quickly be out of jobs, and the unpredictability of it all would be a thing of the past, which is certainly not the case.  Even with far more robust and complex models, forecasts and predictions are often wrong day-to-day, only capturing basic trends and mean reversions.

As it turns out, Antarctica is a much more pleasant place than most people realize…as long as you visit during the summer.

[image: image9.jpg]
(From my visit to the Antarctic Peninsula in 2011)
