Tan-Hsiu Lan NEAS Regression Analysis Spring 2012

Home Sale Prices

Introduction

This project aims at investigating some variables which might influence home prices and finding out the most suitable "Regression Analysis" in order to apply the models in predicting average home prices.

Data

Source: http://lib.stat.cmu.edu/DASL/Datafiles/homedat.html

The data are a random sample of records of resale of homes from Feb 15 to Apr 30, 1993 from the files maintained by the Albuquerque Board of Realtors. This type of data is collected by multiple listing agencies in many cities and is used by realtors as an information base.

There are about 117 raw data. However, some data (AGE and TAX) are incomplete and omitted. Therefore, the 66 complete data to the use of "Regression Analysis".

Variable names

Dependent variable: (Y)

PRICE = Home Selling price (\$hundreds)

Explanatory Variables: (X_i)

- 1. SQFT = Square feet of living space
- 2. AGE = Age of home (years)
- 3. FEATS = Number out of 11 features (dishwasher, refrigerator, microwave, disposer, washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV access
- 4. NE = Located in northeast sector of city (1) or not (0)
- 5. CUST= Custom built(1) or not (0)
- 6. COR = Corner location (1) or not (0)
- 7. TAX = Annual taxes (\$)

Initial Regression Equation

Hypothesis

The null hypothesis which is on trial by the researcher shows that all the regression coefficients (the β_i) are zero: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$

Based on the data, I defined a regression equation of home sales price (Y) by the follow:

$$\mathsf{Y} = \alpha + \beta_1 \mathsf{X}_1 + \beta_2 \mathsf{X}_2 + \beta_3 \mathsf{X}_3 + \beta_4 \mathsf{X}_4 + \beta_5 \mathsf{X}_5 + \beta_6 \mathsf{X}_6 + \beta_7 \mathsf{X}_7 + \varepsilon$$

Where Y is the home sales price, X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 are Square feet of living space(SQFT), Age of home (AGE), Features (FEATS), Located in northeast sector of city (NE), Custom built (CUST), Corner location (COR), Annual taxes (TAX) respectively.

Significance F

0.0000

Using the 7 Variables to proceed regression analysis, the result is as follows:

Regression Statistics				
Multiple R	0.9286			
R Square	0.8623			
Adjusted R Square	<mark>0.8456</mark>			
Standard Error	158.8811			
Observations	66			
ANOVA				
	df	SS	MS	F
Regression	7	9164659	1309237	51.8650
Residual	58	1464105	25243	
Total	65	10628764		
	Coefficients	Standard Error	t Stat	P-value
Intercept	92.7448	101.6070	0.9128	0.3651
SQFT	0.3522	0.0957	3.6786	0.0005
AGE	-0.5651	2.0025	-0.2822	<mark>0.7788</mark>
FEATS	4.3896	18.5550	0.2366	<mark>0.8138</mark>
NE	-17.3853	47.2746	-0.3678	<mark>0.7144</mark>
CUST	174.9411	53.7237	3.2563	0.0019
COR	-73.5823	49.1301	-1.4977	<mark>0.1396</mark>
TAX	0.4989	0.1585	3.1477	0.0026

Table 1: 7 Variables Regression Model

 $\mathsf{Y} = 92.7448 + 0.3522 \mathsf{X}_1 - 0.5651 \mathsf{X}_2 + 4.3896 \mathsf{X}_3 - 17.3853 \mathsf{X}_4 + 174.9411 \mathsf{X}_5 - 73.5823 \mathsf{X}_6 + 0.4989 \mathsf{X}_7$

The R^2 and adjusted R^2 of the full model are 86.23% and 84.56%, indicating that the model totally significant. But almost each explanatory variable is not significant (AGE, FEATS, NE, COR). Therefore, the model must be adjusted.

Explanatory Variables Screen

1. Correlation

Table 2 : Correlation Matrix

	PRICE	SQFT	AGE	FEATS	NE	CUST	COR	TAX
PRICE	1.0000							
SQFT	0.8839	1.0000						
AGE	-0.1667	-0.0377	1.0000					
FEATS	0.3663	0.3574	-0.1835	1.0000				
NE	0.2892	0.3625	0.2164	0.3096	1.0000			
CUST	0.5821	0.4919	0.0085	0.3122	0.1502	1.0000		
COR	-0.1876	-0.0785	0.1627	-0.2491	-0.0237	-0.0537	1.0000	
TAX	0.8775	<mark>0.8752</mark>	-0.2918	0.3040	0.3024	0.4370	-0.1532	1.0000

As seen in the correlation matrix above, the variable SQFT and TAX has high correlation of 0.8752.IT indicates that the two explanatory variables has Multi co-linearity. Further analyzed as follows:

Table	3:	Use	explanatory	y variable	TAX	regress	on de	pendent	variable	SQ	FT
										•	

Regression Statistics					
Multiple R	0.8752	-			
R Square	0.7661				
Adjusted R Square	0.7624				
Standard Error	249.7531				
Observations	66				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	13072670	13072670	209.5765	<mark>0.0000</mark>
Residual	64	3992102	62377		

Total	65	17064772			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	514.0332	90.7944	5.6615	0.0000	
TAX	1.4172	0.0979	14.4768	<mark>0.0000</mark>	

According to the table displayed above, it states that the SQFT and Tax of the explanatory variables are apparently related to each other (P-value=0), and consider that the SQFT has the higher correlation coefficient with the dependent variables, TAX will be removed from the model and then the implementation will be relied upon the 6 remaining variables to proceed the regression.

Adjusted Regression Equation

6 Variables Model

Table 4: 6 Variables Regression Model

Regression Statistics	
Multiple R	0.9158
R Square	0.8387
Adjusted R Square	0.8223
Standard Error	170.4541
Observations	66

ANOVA

	df	SS	MS	F	Significance F
Regression	6	8914543	1485757	51.1367	0.0000
Residual	59	1714221	29055		
Total	65	10628764			
	Coefficients	Standard Error	t Stat	P-value	_
Intercept	161.0689	106.4918	1.5125	0.1357	_
SQFT	0.6134	0.0512	11.9700	0.0000	
AGE	-4.1068	1.7772	-2.3108	0.0244	
FEATS	-8.5281	19.4136	-0.4393	0.6621	
NE	9.1935	49.9026	0.1842	<mark>0.8545</mark>	
CUST	189.4036	57.4258	3.2982	0.0017	

COR	-96.7459	52.1141	-1.8564	0.0684

 $\mathsf{Y} = 161.0689 + 0.6134 \mathsf{X}_1 - 4.1068 \mathsf{X}_2 - 8.5281 \mathsf{X}_3 + 9.1935 \mathsf{X}_4 + 189.4036 \mathsf{X}_5 - 96.7459 \mathsf{X}_6$

The t- statistic associated with NE (0.1842) is the lowest (in absolute value terms) of the six explanatory variables. Since a higher t-statistic indicates a better estimate of the true coefficient, the variable associated with the lowest t-statistic would be the least likely to be a good estimator. In addition, the p-value associated with NE (0.8545) is the highest of the p-values of the six explanatory variables. In general, the lower the p-value, the more likely it is that the result is significant. Thus, both of these statistics indicate that NE is the least significant variable of those shown above. Thus, NE will be removed from the model and then the implementation will be relied upon the 5 remaining variables to proceed the regression testing.

5 Variables Model

Regression Statistics					
Multiple R	0.9158				
R Square	0.8386				
Adjusted R Square	<mark>0.8252</mark>				
Standard Error	169.0763				
Observations	66				
ANOVA					
	df	SS	MS	F	Significance F
Regression	5	8913557	1782711	<mark>62.3614</mark>	0.0000
Residual	60	1715207	28587		
Total	65	10628764			
					_
	Coefficients	Standard Error	t Stat	P-value	
Intercept	156.6329	102.8953	1.5223	0.1332	
SQFT	0.6162	0.0485	12.7049	0.0000	
AGE	-4.0094	1.6830	-2.3823	0.0204	
FEATS	-7.5435	18.5126	-0.4075	<mark>0.6851</mark>	
CUST	188.3923	56.7008	3.3226	0.0015	
COR	-96.5201	51.6786	-1.8677	0.0667	

Table 5: 5 Variables Regression Model

 $Y = 156.6329 + 0.6162X_1 - 4.0094X_2 - 7.5435X_3 + 188.3923X_4 - 96.5201X_5$

The p-value associated with FEATS (0.6851) is the highest of the p-values of the five explanatory variables. Thus, FEATS will be removed from the model and then the implementation will be relied upon the 5 remaining variables to proceed the regression testing.

4 Variables Model

Regression Statistics	
Multiple R	0.9155
R Square	0.8382
Adjusted R Square	<mark>0.8276</mark>
Standard Error	167.9165
Observations	66

|--|

	df	SS	MS	F	Significance F
Regression	4	8908810	2227202	<mark>78.9901</mark>	0.0000
Residual	61	1719954	28196		
Total	65	10628764			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	133.0733	84.5312	1.5742	0.1206	_
SQFT	0.6116	0.0468	13.0661	0.0000	
AGE	-3.9007	1.6504	-2.3636	0.0213	
CUST	184.3325	55.4357	3.3252	0.0015	
COR	-92.0147	50.1357	-1.8353	<mark>0.0713</mark>	

This model can be represented by the following equation:

Y= 133.0733+ 0.6116X₁ -3.9007X₂ + 184.3325X₃ -92.0147X₄

The p-value associated with COR (0.0713) is the highest of the p-values of the four explanatory variables. Thus, COR will be removed from the model and then the implementation will be relied upon the 5 remaining variables to proceed the regression testing.

3 Variables Model

Table 7: 3 Variables Regression Model

Regression Statistics	
Multiple R	0.9106
R Square	0.8292
Adjusted R Square	<mark>0.8210</mark>
Standard Error	171.0937
Observations	66

ANOVA

	df	SS	MS	F	Significance F
Regression	3	8813835	2937945	100.3635	0.0000
Residual	62	1814928	29273		
Total	65	10628764			
					_
	Coefficients	Standard Error	t Stat	P-value	
Intercept	111.0316	85.2569	1.3023	0.1976	-
SQFT	0.6161	0.0476	12.9367	0.0000	
AGE	-4.3885	1.6596	-2.6442	0.0104	

56.4701

This model can be represented by the following equation:

186.6379

Y= 111.0316 + 0.6161X₁ -4.3885X₂ + 186.6379X₃

The P-value of AGE is 0.0104. In 95% confident level is significant, but in 99% confident level is not significant. Thus, AGE will be removed from the model and then the implementation will be relied upon the 5 remaining variables to proceed the regression testing.

3.3051

0.0016

2 Variables Model

CUST

Table 8: 2 Variables Regression Model

Regression Statistics	
Multiple R	0.9000
R Square	0.8100
Adjusted R Square	<mark>0.8040</mark>

Standard Error	179.0451				
Observations	66				
ANOVA					
	df	SS	MS	F	Significance F
Regression	2	8609163	4304582	134.2784	0.0000
Residual	63	2019600	32057		
Total	65	10628764			
					_
	Coefficients	Standard Error	t Stat	P-value	
Intercept	35.1922	84.0191	0.4189	0.6767	_
SQFT	0.6222	0.0498	12.4982	0.0000	
CUST	181.9942	59.0659	3.0812	0.0031	

 $Y = 35.1922 + 0.6222X_1 + 181.9942X_2$

The R^2 (81.00%) and adjusted R^2 (80.40%) in this model are lower than those in the rest of the models examined above.

Conclusions

Raw Data can't be used directly. We should consider the multi co-linearity and adjusted the regression model. After, the null hypothesis which is on trial by the researcher shows that all the regression coefficients (the β_i) are zero.

To sum up, the number of not significant explanatory variables have to be 0 in order to have the best model outcomes. Meanwhile, the F Statistics, R Square, and Adjusted R Square must be as higher as it could be, while the Standard Error needs to be as lower as possible.

The table below assembles the outcomes of all the models. By comparison, the best regression model is found out. Because the Number of not significant explanatory variables must be 0, it shows that only model 2 and 3 match to the result. Also, in model 2 and 3, the statistics of the R Square, Adjusted R Square and Standard Error point out that the 3 explanatory variables model is better. However, the 2

explanatory variables model of F Statistic is also acceptable, but the 3 explanatory variables model is apparently outstanding.

Due to what has been mentioned above, it evidences that the three explanatory variables (SQFT, AGE and CUST) will considered to be the best choice.

Number of explanatory variables in models	F Stat	R Square	Adjusted R Square	Standard Error	Number of not significant explanatory variables (95% confident level)
7	51.86	86.23%	84.56%	159	4
6	51.14	83.87%	82.23%	170	3
5	62.36	83.86%	82.52%	169	2
4	78.99	83.82%	82.76%	168	1
<mark>3</mark>	<mark>100.36</mark>	<mark>82.92%</mark>	<mark>82.10%</mark>	<mark>171</mark>	<mark>0</mark>
2	134.28	81.00%	80.40%	179	0

	~				-		
Table 0	. Summ	owizog th	a magnite of	the	nognoggion	onolygig	nonformod
Table 9	: Summ	arizes un	e results of	une	regression	anaiysis	Deriormeu

According to the statement mentioned above, it can be noted that the regression model, which is composed of the following explanatory variables, Square feet of living space, Age of home, and Custom built (SQFT, AGE and CUST), likely being reasonable illustrate the level of house prices. The regression model is as below.

Y= 111.0316 + 0.6161X₁ - 4.3885X₂ + 186.6379X₃