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1. Introduction 

In this final project, I perform an analysis of the daily closing prices of 

NASDAQ-100 (NDX) stock index. According to Wikipedia, “NASDAQ-100 is a 

stock market index of 100 of the largest domestic and international non-financial 

companies listed on the NASDAQ.” I adopt Time Series methods to analyze the 

5-year (from January 1, 2005 to March 31, 2010) stock price of NASDAQ-100, and 

observe the relationship between stock prices of NASDAQ-100 and Google Inc. 

(Goog). The reason why I choose Google Inc. is Google Inc. is one of the components 

in the NASDAQ-100.  

Furthermore, the analysis conducted in this project will be organized in two parts: 

standard analysis and specific analysis. In standard analysis, first, I will analyze the 

basic properties of the time series; next, the price process of NASDAQ-100 will be 

analyzed and modeled, also checked the model; finally, I will predict future values of 

the time series and a prediction interval. In specific analysis, I will divide the time 

series into subperiods, and fit models separately and compare each of the subperiods 

further. Last but not least, I want to explore the relationship of NASDAQ-100 and 

Google Inc.. 

 

 

 

2. Standard Analysis 

 

Figure 1: NDX Historical Price (from Jan 1, 2005 to Mar 31, 2010) 
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Figure 2: ACF and PACF of      } 

 

From Figures 1 and 2, we can see that the ACF of the time series decline very 

slowly. This suggests that the time series behaves as random walk, which means it is 

not stationary. 

 

 

2.2 Decomposition Model  

Since from Figure 1 we can see that the time series has no seasonal pattern, we 

use the nonparametric method to decompose the time series into trend and random 

components. The Decomposition model is shown as followed: 

            

Also, From Figure 3, we can see that the time series have a stochastic trend. 

 

 

Figure 3: The trend component      and the random component      
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   Since the original time series is not stationary, what we are going to do is to make 

the process stationary. First, we have to make a variance-stabilizing transformation by 

taking logarithms. Then, use the Rule of Thumb to determine how many times of 

differences we should do. From Table 1, we know that we have to take differencing 

once, i.e. make        to be           . From Table 2, we can see that the result 

of Dickey-Fuller Test is that the time series        is not stationary. However, after 

we take differencing once, from table 2 we can see that the series            is 

stationary. Also, see Figure 4 and Figure 5, they show the time series            is 

stationary. 

 

 

 

Table 1: Rule of Thumb Test 

 

 

 

 
  Table 2: Dickey-Fuller Test 

 

 

 
Figure 4: Plot of            
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Figure 5: ACF and PACF of            

 

 

2.4 Fit an ARIMA Model 

 After we do logarithm and difference to make the process a stationary model, we 

want to fit a model into ARIMA model. See Table 3, we find that the smallest AIC is 

-7201.201, the result is                     . From Table 4, we can obtain the 

estimated coefficients of the model. The model is shown as following: 

 

                                                    

, where Z is the model residuals 

 

 

 

  Table 3: AIC 

 

 

 

  Table 4: Result and coefficients of ARIMA model 
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Figure 6: Histogram and QQ-plot of Residuals 

 

 

 

 Table 5: Skewness, Kurtosis, and L-B test of Residuals 

 

As Table 5 implied, we know that the residuals are uncorrelated by Ljung-Box 

test. From Figure 6, we can see that the residuals are not normally distributed that 

means this model is not fitted, but in QQ-plot, the residuals seems quadratic. Thus, we 

do the ACF of squared residuals. 

 

Figure 7: plot and ACF of residuals, and ACF of resid^2 

 

See Figure 7 of the ACF of squared residuals, those autocorrelations are not large, 

but they are significant. They are all positive, which is uncommon in most economic 

time series yet is an implication of the GARCH(1,1) model. So, the ARIMA model is 

not complete, and we need to fit GARCH model. 
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2.5 Fit GARCH Model 

 We take the model residuals      to fit the GARCH(1,1) model, the result is in 

Table 6. The model is as following: 

           

  
                     

           
  

                                        . 

 

 

  Table 6: Result of fitting GARCH(1,1) 

 

 

Figure 8: plot of sigma and residuals {e}, and ACF of residual {e} and {e^2} 
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In Figure 8, we can see the residuals and squared residuals are stationary. Finally, 

we get a complete stationary model that is  

                                 . 

                                                    

           

  
                     

           
  

 

 

2.6 Model Checking  

 

Figure 9: Histogram and QQ-plot of residuals{e} 

 

         

 Table 7: Result of skewness, kutosis, and Shapiro Test 

 

Since          , which means stationary, the model we get is a stationary 

and appropriate model. However, according to the Shapiro-Wilk test in Table 7 and 

Figure 9, we know that residual {e} seems not normally distributed. And from the 

skewness and the kurtosis in Table 7, {e} is more likely a t-distribution. So, maybe we 

need to fit tGARCH.  

 

2.7 Simulate the time series 
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Figure 10: Simulation of            and        

 

Substituting the model residuals {e} into the fitted stationary model, and then to 

simulate the original data. We can see that the simulation plot as in Figure 10 is 

similar to the original plot as in Figure 1, and the only difference between two figures 

are the scales of y-axis. So, I think the model I estimated is fitted. 

 

 

2.8.1 Prediction(1): predict future values and prediction interval 

 

 According to the plot, the values we predicted are all in the prediction interval. 

 

 

2.8.2 Prediction(2): one-step ahead prediction & prediction interval 

     Broad line - prediction of return model (ARMA(2,1)~GARCH(1,1)) 

     Dotted line - prediction interval (assumption – GARCH variance)  

 

We can see the above plot is similar to the original time series            as 

Figure 4. 

 

 

2.8.3 Prediction(3): 

 In-sample is the data from Jan 1,2005 – Dec 31,2009 

     Out-of-sample is 30 observations (use in-sample part to predict 30 values.) 
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 According to the plots, we can see there are three predicted values lies outside 

the prediction interval. 

 

 

3. Specific Analysis 

3.1 Subperiods 

   We divide the time series dataset into three periods: (1) Jan 2005-Dec 2007, (2) 

Jan 2008-Dec 2008, and (3) Jan 2009-Mar 2010. 

 

 
Figure 11: plot of 3 periods of original data 

 

Figure 12: plot of 3 periods of returns data 
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 From Figure 11 and Figure 12, we can see that three time series seem very 

different. Then, we fit models separately for the three subperiods. The result is shown 

as Table 8: subperiod(1) cannot fit any ARIMA model, subperiod(2) fits AR(2) model, 

and subperiod(3) fits ARMA(2,2) model. Since they are different models, and see the 

standard errors of the estimators in Table 8, we can conclusion that the models of 

subperiods differ significantly. 

 

 

 

  Table 8: Result of fitting ARIMA model to each period 

 

3.2 Multivariate Time Series: Fitting VARMA model 

 

 

Figure 13: Plot of {NDX} and {Goog} 

 

 

Figure 14: plot of            and             
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  Table 9: Results of VAR estimation 

 

   According to the results, which are shown in Table 9, some parameters are 

significantly different from 0 at the level 5%. And we get the estimated model is: 
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Variance matrix of              
 : 

   
                  
                  

  

 

 

Figure 15: ACF of            and            

 

Figure 16: ACF of Z1, ACF of Z2, ACF of Z1 and Z2 

 

We obtain the roots from Table 9, and all roots are greater than one. So, the model 

we get is stationary and causal. Also, compare Figure 15 to Figure 16, most of the 

autocorrelation and cross-correlation has been captured by the model and is not 

presented in the residuals. Therefore, the model above we obtained is a fitted model. 

 

 

3.3 Transfer Function model 

-Step (1): do Granger test, then define which one granger-causes another one.

 

  Table 9: Result of Granger Test 

 

By the result of Granger test which is shown in Table 9, we know that            
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granger-causes            . So, I select the time series            as the input and 

the time series             as the output.  

 

-Step (2): identification of transfer function models 

 

Figue 17: ACF of           &            and ACF of {Z}&{U} 

 

We get residuals-Z by fitting an ARMA model to the input series, and get filtered 

time series-U by filtering the output. Next, plot the ACF of {Z} and {U}. Comparing  

two plots in Figure 17, most of the cross-correlation has been captured by the model 

and is not presented in the resideuals. Since                            , the 

time series can be considered a causal transfer function model. 

According to the results of transfer function model and multivariate time series 

model VAR(3), we obtain the same result that is two processes have one-way effect 

relationship. 

 

 

4. Conclusion 

 In this analysis, we use several time series analysis methods to analyze a 5-year 

stock price of NASDAQ-100. We transform the data by taking log and difference to 

make the time series stationary, and take the data to apply the ARMA model first, and 

the GARCH model later. Although we can fit the time series as 

ARMA(2,1)-GARCH(1,1) model, the residuals are not normally distributed that 

against the assumptions of ARMA-GARCH model. This suggests that a different class 

of model will need to be used. Next, we try to investigate the relationship of 

NASDAQ-100 and Google. We fit a model that can show two processes are related.  
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