Time Series Analysis Project
Chia-Chien Chou

1. Introduction

In this final project, | perform an analysis of the daily closing prices of
NASDAQ-100 (NDX) stock index. According to Wikipedia, “NASDAQ-100 is a
stock market index of 100 of the largest domestic and international non-financial
companies listed on the NASDAQ.” | adopt Time Series methods to analyze the
5-year (from January 1, 2005 to March 31, 2010) stock price of NASDAQ-100, and
observe the relationship between stock prices of NASDAQ-100 and Google Inc.
(Goog). The reason why | choose Google Inc. is Google Inc. is one of the components
in the NASDAQ-100.

Furthermore, the analysis conducted in this project will be organized in two parts:
standard analysis and specific analysis. In standard analysis, first, | will analyze the
basic properties of the time series; next, the price process of NASDAQ-100 will be
analyzed and modeled, also checked the model; finally, I will predict future values of
the time series and a prediction interval. In specific analysis, | will divide the time
series into subperiods, and fit models separately and compare each of the subperiods
further. Last but not least, | want to explore the relationship of NASDAQ-100 and
Google Inc..

2. Standard Analysis
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Figure 1: NDX Historical Price (from Jan 1, 2005 to Mar 31, 2010)
2.1 Basic Properties
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Figure 2: ACF and PACF of {NDX,}

From Figures 1 and 2, we can see that the ACF of the time series decline very
slowly. This suggests that the time series behaves as random walk, which means it is
not stationary.

2.2 Decomposition Model
Since from Figure 1 we can see that the time series has no seasonal pattern, we
use the nonparametric method to decompose the time series into trend and random
components. The Decomposition model is shown as followed:
NDX, = m; + Y;
Also, From Figure 3, we can see that the time series have a stochastic trend.
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Figure 3: The trend component {m,} and the random component {Y,}

2.3 Stationary



Since the original time series is not stationary, what we are going to do is to make
the process stationary. First, we have to make a variance-stabilizing transformation by
taking logarithms. Then, use the Rule of Thumb to determine how many times of
differences we should do. From Table 1, we know that we have to take differencing
once, i.e. make {NDX,} to be {AlogNDX,}. From Table 2, we can see that the result
of Dickey-Fuller Test is that the time series {NDX,} is not stationary. However, after
we take differencing once, from table 2 we can see that the series {Alog NDX,} is
stationary. Also, see Figure 4 and Figure 5, they show the time series {Alog NDX,} is
stationary.

> Frule of thumb

> =d (HQ)

[1] 235.7425

> sd({diff (HQ))

[1] 24.5114%2

> sd(diff (dif£ (HQ)) )
[1] 3&6.3073

Table 1: Rule of Thumb Test

> adf.test (HNQ)
Augmented Dickey-Fuller Test

data: NQ

Dickey-Fuller = -1,6087, Lag order = 10, p-value = 0.744
alternative hypothesis: stationary

> adf.test (diff (log (HQ)))

bugmented Dickey-Fuller Test

data: diff({log(lQ))
Dickey-Fuller = -10.7047, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary

Table 2: Dickey-Fuller Test
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Figure 4: Plot of {Alog NDX,}



Series diff.log.NQ Series diff.log.NQ

o |
S —
s o L L
o) < P= I“H|| | | | |
< =
S = = S | H
<
— o A Heo e
g il e tralrtn |-I-|Jr--.rl-r s it =)
St St i
T T T T T T T T T T T T T
O 5 15 25 O 5 10 20 30
Lag Lag

Figure 5: ACF and PACF of {Alog NDX;}

2.4 Fit an ARIMA Model

After we do logarithm and difference to make the process a stationary model, we
want to fit a model into ARIMA model. See Table 3, we find that the smallest AIC is
-7201.201, the result is {Alog NDX }~ARMA(2,1). From Table 4, we can obtain the
estimated coefficients of the model. The model is shown as following:

AlogNDX, = —0.59AlogNDX,_; — 0.16AlogNDX,_, + Z, + 0.48Z,_,
, where Z is the model residuals

> aic

[,1] [.2] [.3] [,4]
[1,1 -7171.242 -T7188.208 -7194.106 -7200.827
[2,] -7184.777 -7189.524 -7199.302 -7199.415
[3,] -7197.770 (=7201.201)-7199.353 -7197.47¢%
[4,] -7200.942 -7199,395 -7197.484 -7195.496

Table 3: AIC
» arima (diff.log.NQ,order=c(2,0,1) ,method="ML")
Call:
arima(x = diff.log.NHQ, order = c(2, 0, 1), method = "ML")
Coefficients:
arl arz mal intercept

-0.5937 -0.1602 0.4811 2e-04
s.e2. 0.1528 0.0278 0.1538 4e-04
sigma”? estimated as 0.0002473: log likelihood = 3605.6, gaic = -T7201.2

Table 4: Result and coefficients of ARIMA model



Histogram of model.resid Normal Q-Q Plot
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Figure 6: Histogram and QQ-plot of Residuals
> Box.test (model.re=sid, type=c("Ljung-Box"))

Box-Ljung test

data: model.resid
¥-=2quared = 2e-04, df = 1, p-value = 0.9888

> skewness (model.resid)
[1] -0.209048%9

> kurtosis (model.resid)
[1] 10.14522

Table 5: Skewness, Kurtosis, and L-B test of Residuals

As Table 5 implied, we know that the residuals are uncorrelated by Ljung-Box
test. From Figure 6, we can see that the residuals are not normally distributed that
means this model is not fitted, but in QQ-plot, the residuals seems quadratic. Thus, we
do the ACF of squared residuals.
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Figure 7: plot and ACF of residuals, and ACF of resid"2

See Figure 7 of the ACF of squared residuals, those autocorrelations are not large,
but they are significant. They are all positive, which is uncommon in most economic
time series yet is an implication of the GARCH(1,1) model. So, the ARIMA model is
not complete, and we need to fit GARCH model.



2.5 Fit GARCH Model

We take the model residuals {Z.} to fit the GARCH(1,1) model, the result is in

Table 6. The model is as following:

Zy = o€

o2 = 1.79¢7% + 0.0678Z2 ; + 0.9230%_,
,where {e;} is GARCH(1,1) model residual.

Call:
garch(x = model.resid, order = c(1, 1))
Model:
GARCH({1,1)
Reziduals:
Min 1@ Median 30 Max

-2.1584 -0.5877 0.1030 0.e486 3.1301

Coefficient (s):
Eztimate S5td. Error t walue Pr(>|t])
.T8Te-06 6.867e-07 2.603 0.00925 **
LTT7Te-02 1.048e-02 6.467 9.9T7e-11 ***
. 231e-01 1.301e-02 TD.939 <« Ze-l6 *#*%

Signif. codes: O ****7 (0,001 ***f Q.01 **f 0.05 *." 0.1 " 1

Diagnostic Tests:
Jargue Bera Test

data: Residuals

¥-=zgquared = 115.39218, df = 2, p-value < 2.2e-16

Box-Lijung test

data: Squared.Residuals
¥-=zgquared = 2.363, df = 1, p-wvalue = 0.1242

Table 6: Result of fitting GARCH(1,1)
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Figure 8: plot of sigma and residuals {e}, and ACF of residual {e} and {e"2}



In Figure 8, we can see the residuals and squared residuals are stationary. Finally,
we get a complete stationary model that is
{AlogNDX,} ~ ARMA(2,1) — GARCH(1,1).
AlogNDX; = —0.59AlogNDX;_; — 0.16Alog NDX,_, + Z; + 0.48Z;_4
Ly = orey
o2 = 1.79¢7% + 0.0678Z% ; + 0.9230%_,

2.6 Model Checking

Histogram of e Normal Q-Q Plot
o
o
® 2~
> o 2
e 8 : o
3 (o4
g g RN
£ S B
§ 7
o 00
T L LI I
4 2 0 2 3 210 1 2 3
e Theoretical Quantiles
Figure 9: Histogram and QQ-plot of residuals{e}
> mean(e[2:n])
[1] ‘?"?252_17’“ » shapiro.test(e)
> =d{e[2:in])
[1] 0.9992923 ] i i i
> skewness(e[2:n]) Shapiro-Wilk normality test
[1] -0.4363721
> kurtosis(e[2:n]) data: e
[1] 4.156685 W = 0.9865, p—value = 9.965e-10

Table 7: Result of skewness, kutosis, and Shapiro Test

Since a; + B = 0.99, which means stationary, the model we get is a stationary
and appropriate model. However, according to the Shapiro-Wilk test in Table 7 and
Figure 9, we know that residual {e} seems not normally distributed. And from the
skewness and the kurtosis in Table 7, {e} is more likely a t-distribution. So, maybe we
need to fit tGARCH.

2.7 Simulate the time series
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Figure 10: Simulation of {AlogNDX,} and {NDX}

Substituting the model residuals {e} into the fitted stationary model, and then to
simulate the original data. We can see that the simulation plot as in Figure 10 is
similar to the original plot as in Figure 1, and the only difference between two figures
are the scales of y-axis. So, I think the model | estimated is fitted.

2.8.1 Prediction(1): predict future values and prediction interval
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According to the plot, the values we predicted are all in the prediction interval.

2.8.2 Prediction(2): one-step ahead prediction & prediction interval
Broad line - prediction of return model (ARMA(2,1)~GARCH(1,1))
Dotted line - prediction interval (assumption — GARCH variance)
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We can see the above plot is similar to the original time series {Alog NDX,} as
Figure 4.

2.8.3 Prediction(3):
In-sample is the data from Jan 1,2005 — Dec 31,2009
Out-of-sample is 30 observations (use in-sample part to predict 30 values.)
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According to the plots, we can see there are three predicted values lies outside
the prediction interval.

3. Specific Analysis
3.1 Subperiods

We divide the time series dataset into three periods: (1) Jan 2005-Dec 2007, (2)
Jan 2008-Dec 2008, and (3) Jan 2009-Mar 2010.
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Figure 11: plot of 3 periods of original data
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Figure 12: plot of 3 periods of returns data
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From Figure 11 and Figure 12, we can see that three time series seem very
different. Then, we fit models separately for the three subperiods. The result is shown
as Table 8: subperiod(1) cannot fit any ARIMA model, subperiod(2) fits AR(2) model,
and subperiod(3) fits ARMA(2,2) model. Since they are different models, and see the
standard errors of the estimators in Table 8, we can conclusion that the models of
subperiods differ significantly.

> arima (R.B, order=ci(2,0,0))

Call:
arima(x = R.B, order = c(2, 0, 0}))

Coefficients:
arl arZ intercept
-0.1953 -0.1839 -0.0018
s.e. 0.0621 0.0623 a.0012

sigma™? estimated as 0.0006704: log likelihood = 565.38, aic = -1122.7&

> arima (R.C, order=c(2,0,2))

Call:
arima(x = R.C, order = c(2, 0, 2})
Coefficients:
arl ard mal maZz intercept
1.4230 -0.8815 -1.51%9& 1.0000 0.0014
=.e. 0.0301 0.0286 0.0141 0.0162 0.0009
sigma™2 estimated as 0.0002248: log likelihood = 862.56, aic = -17135.13

Table 8: Result of fitting ARIMA model to each period

3.2 Multivariate Time Series: Fitting VARMA model
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Figure 13: Plot of {NDX} and {Goog}
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Figure 14: plot of {Alog NDX,} and {Alog Goog,}
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VAR Estimation Results:

Endogenous variables: diff.log.HNQ, diff.log.Goog
Deterministic variables: const

Sanple =size: 1316

Log Likelihood: 7121.283

Root=2 of the characteristic polynomial:

0.4802 0.4802 0.3631 0.3589 0.3589 0.1&89

Call:

VAR (v = ckind(diff.log.NQ, diff.log.Goog), p = 3)

Estimation results for eguation diff.log.HQ:

diff.log.NQ = diff.log.NQ.11 + diff.log.Goog.ll + diff.log.NQ.12

+ diff.log.Goog.1l2 + diff.log.NQ.13 + diff.log.Goog.l3 + const

Eztimate 5td. Error t walue Pr(>|t]|

diff.log.NQ.11 -0.1220391 0.0375654 -3.249 0.00119 **
diff.log.Goog.11 0.0080707 0.0260459 0.310 0.75671
diff.log.NQ.12 -0.0809684 0.0374666 -2.161 0.03087 *
diff.log.Goog.l2 -0.015%2650 0.0255517 -0.742 0.45801
diff.log.NQ.13 0.1080473 0.0372468 2.901 0.00378 =¥
diff.log.Goog.13 -0.0464851 0.0258732 -1.797 0.07262
const 0.0002378 0.0004352 0.546 0.58487

Signif. codes: 0 “#**’ 0.001 *#**’ 0.01 **’ 0.05 *." 0.1 * " 1

Residual standard error: 0.01575 on 1309 degrees of freedom
Multiple R-Sguared: 0.02977, Adjusted R-=quared: 0.02532
F-statistic: 6.693 on 6 and 130% DF, p-value: 5.417e-07

Estimation results for equation diff.log.Goog:

diff.log.Goog = diff.log.NQ.11 + diff.log.Goog.1ll + diff.log.NQ.12 + diff.log.Goog.l2

+ diff.log.HQ.13 + diff.log.Goog.l3 + const

Estimate 5td. Error t wvalue Pri(>|t])

diff.log.NQ.11 -0.0208644 0.0541385 -0.385 0.70000
diff.log.Goog.1l1l -0.0068067 0.0375354 -0.181 0.85613
diff.log.NQ.12 0.0057211 0.0539941 0.106 0.91563
diff.log.Goog.12 -0.0105736 0.0373%97 -0.283 0.77744
diff.log.NQ.13 0.16165956 0.0536773 3.012 0.00264 **
diff.log.Goog.13 -0.0864441 0.0372866 -2.318 0.02058 *
const 0.0008964 0.0006272 1.429 0.1531%5

S5ignif. codes: 0 “***7 0.001 ***" Q.01 *** 0.05 *." 0.1 * " 1

Residual standard error: 0.0227 on 1309 degrees of freedom
Multiple R-Sguared: 0.007658, Adjusted R-sguared: 0.003108%
F-statistic: 1.684 on & and 1309 DF, p-value: 0.1214

Covariance matrix of residuals:
diff.log.NQ diff.log.Goog

diff.log.NQ 0.0002481 0.0002423

diff.log.Goog 0.0002423 0.0005152

Correlation matrix of residuals:
diff.log.NQ diff.log.Goog

diff.log.NQ 1.0000 0.6778

diff.log.Goog 0.6778 1.0000

Table 9: Results of VAR estimation

According to the results, which are shown in Table 9, some parameters are

significantly different from O at the level 5%. And we get the estimated model is:
Alog NDX, = —0.12 Alog NDX;_; — 0.08 AlogNDX,_, + 0.11 Alog NDX;_5
Alog Goog, = 0.162 Alog NDX;_; — 0.086 Alog Goog;_5
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Variance matrix of Z, = (Zy, Z,0)":

_ [2481le—04 2.423e—04
" 12.423e—04 5.152e — 04
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Figure 15: ACF of {AlogNDX} and {Alog Goog}
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Figure 16: ACF of Z1, ACF of Z2, ACF of Z1 and Z2
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We obtain the roots from Table 9, and all roots are greater than one. So, the model
we get is stationary and causal. Also, compare Figure 15 to Figure 16, most of the
autocorrelation and cross-correlation has been captured by the model and is not
presented in the residuals. Therefore, the model above we obtained is a fitted model.

3.3 Transfer Function model
-Step (1): do Granger test, then define which one granger-causes another one.

> granger.test (cbhind(diff.log.HQ,diff.log.Goog) , p=3)

diff.log.Goog -» diff.log.NQ
diff.log.NQ -> diff.log.Goog

F-statistic

1.283050
3.176842

0.

p-value
27869863
0.0233353%9

Table 9: Result of Granger Test

By the result of Granger test which is shown in Table 9, we know that {Alog NDX,}
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granger-causes {Alog Goog.}. S0, | select the time series {Alog NDX.} as the input and
the time series {Alog Goog,} as the output.

-Step (2): identification of transfer function models
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Figue 17: ACF of {Alog NDX,}&{Alog Goog;} and ACF of {Z}&{U}

We get residuals-Z by fitting an ARMA model to the input series, and get filtered
time series-U by filtering the output. Next, plot the ACF of {Z} and {U}. Comparing
two plots in Figure 17, most of the cross-correlation has been captured by the model
and is not presented in the resideuals. Since corr(U, Z.,;) = 0 for allh > 0, the
time series can be considered a causal transfer function model.

According to the results of transfer function model and multivariate time series
model VAR(3), we obtain the same result that is two processes have one-way effect
relationship.

4. Conclusion

In this analysis, we use several time series analysis methods to analyze a 5-year
stock price of NASDAQ-100. We transform the data by taking log and difference to
make the time series stationary, and take the data to apply the ARMA model first, and
the GARCH model later. Although we can fit the time series as
ARMA(2,1)-GARCH(1,1) model, the residuals are not normally distributed that
against the assumptions of ARMA-GARCH model. This suggests that a different class
of model will need to be used. Next, we try to investigate the relationship of
NASDAQ-100 and Google. We fit a model that can show two processes are related.
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