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Introduction
No other economic relationship in the world is as integrated as the transatlantic economy. The EU and the US economies account together for about half the entire world GDP and for nearly 1 third of world trade flows. The fluctuation of the exchange rate between Euro and USD is important for the trade and investment activities between the two economies.  In this student project, I will model the exchange rate between Euro and USD by ARIMA model.  In particular, this project will examine the ARI(1,1) model and IMA(1,1) model.
Data 
The data I used for this analysis is the weekly Euro /USD rate for the past 4 years from Dec 5th, 2008 to September 21st, 2012.  The data source is the OANDA website:
http://www.oanda.com/currency/historical-rates
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Weekly Exchange Rate: Euro Per $1 USD

Exchange Rate


It appears Euro has been more valuable than US dollar, for the majority of time the $1 USD is worth between 0.66 to 0.83 Euro, with the highest value at the week of Jun 4th 2010. The USD decreased in value at the following year, and picked up at the middle of 2011, and gained value at 2012. 
Seasonality Check
I plot of weekly exchange rate of Euro/USD for each year and compare the pattern of change across years. 
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The change of the exchange rate does not have the same pattern across years,  this indicates that the graph does not indicate a seasonal effect. Therefore, we don’t need to model the seasonal effects in the ARIMA model. 

Model Specifications

Let us start the analysis with the autocorrelation functions of the original exchange rate data. 
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Correlogram adjusted for DOF


We know that for autoregressive process, the autocorrelation function decreases geometrically as lag increases, and for moving average process, the autocorrelation function cut off at period q. The above chart shows that the autocorrelation function decreases very slowly, this indicates that the process is non-stationary. 
Therefore, we would consider the first difference of the original data and the correlogram of the first difference. 
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First  Difference of  Euro/USD Exchange Rate
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Correlogram adjusted for DOF -First Difference of Original Data


The dotted red line represents the 95% interval of white noise process, which is +/- [2/(199)^0.5] = +/- 0.1418. From the autocorrelation function of the first difference of the original data, we can see that the autocorrelation of first lag is significantly different from 0, after the lag 2, almost all the autocorrelations are within the band which indicate they are not significantly different from 0. Only at lag 13, 16, 26 and 33, the autocorrelations are slightly outside of the range, I would treat them as outliers.
We cannot really tell if the process is AR(1) or MA(1) from the above graph of autocorrelation functions. As the autocorrelation of the first lag is not very high (which is 0.26), the autocorrelation of the second lag could be 0.26^2=0.06 which is very close to the observed sample autocorrelation of 0.058. But it is also within the 95% interval of 0 autocorrelations. Therefore, both AR(1) and MA(1) process could be possible. I will try fitting both models and see which process have a better model fitness.
Parameter Estimation

Yt is the first difference of the original exchange rate:

Yt= Exchange Rate t – Exchange Rate t-1
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For the MA(1) process, we will estimate [image: image9.png]. [image: image11.png] is the average of the first differences, which is        (-0.0000495). Assume [image: image13.png], and [image: image15.png]. Using the least square estimation for [image: image17.png], we can find the value of [image: image19.png] which will minimize [image: image21.png]. The calculation is done by using the Solver add-in in Excel and [image: image23.png]= 0.251. Since [image: image25.png], the first difference time series is invertible. 

For the AR(1) process, we will estimate [image: image27.png] using the Regression add-in in Excel by setting Yt as the dependant variable, and Y t-1 as the explanatory variable. The summary output below shows that [image: image29.png] = 0.2663, and  [image: image31.png] = -0.000022. 
[image: image32.emf]SUMMARY OUTPUT

Regression Statistics

Multiple R0.26610535

R Square0.070812057

Adjusted R Square0.066071302

Standard Error0.01010669

Observations198

ANOVA

dfSSMSFSignificance F

Regression10.001525730.00152614.936870.000151086

Residual1960.0200204540.000102

Total1970.021546183

CoefficientsStandard Errort StatP-valueLower 95%Upper 95%

Intercept(0.000022)        0.000718286-0.030790.975465-0.001438680.001394443

yt-10.2663146670.0689072993.8648250.0001510.1304197450.402209589


Summary of the model functions with the estimated parameters are as the following:
AR(1):
 Yt =  0.2663*Yt-1+ et - 0.000022


 et = Yt - 0.2663*Yt-1 + 0.000022

 MA(1):  Yt –(-0.0000495) = et - 0.251 et-1


 et =  Yt + 0.0000495 + 0.251 et-1
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Model Diagnostic

 Now that we have estimated the parameters, we can test the AR(1) and MA(1) model against the original data. Let’s look at the residuals analysis. By the model definition, the residuals should be white noise process, which is an independent, and identically distributed normal variables with zero mean and common stand variations. The residuals should not inherit serial correlation. Furthermore we will compare the residuals of the two models using the Durbin-Watson Test Statistic and the Box-Pierce Q Statistic. 
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AR(1):   Yt-1  Residual Plot
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MA(1) :  Yt-1 Vs Residual Plot


Summary of Residual Diagnostics
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The residual mean 1.31E-191.0606E-05

The residual standard deviation0.0100810.0101132

# of positive residuals9998

# of negative residuals99100

The minimum residual -0.040592-0.0415605

The maximum residual0.0240940.02479114

The residual range0.0646860.06635167
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Durbin-Watson Test Statistic1.916731.88214383

Box-Pierce Q Statistic (lag 100)78.9368579.4571456

Chi-Square Test Statistic (lag 100 and 1%)134.6416134.641617


The results for Durbin-Watson Test Statistic are very close to 2 for both AR(1) and MA(1), therefore we can say that the residuals are not correlated. For both the AR(1) and MA(1) models, the Box-Pierce Q Statistic is lower than the Chi-Square Test Statistics at 1% and 100 degrees of freedom, therefore we cannot reject the null hypothesis that the residuals are white noise process. However, the AR(1) model shows a slightly better fitness for the model.
Conclusion 

In my opinion the ARI (1,1) model fits the exchange rate data better. The autoregressive parameter on 1 period lag is less than 1, indicating the first difference time series is invertible. The results for Durbin-Watson Test Statistic are very close to 2, indicating that the residuals are not correlated. Furthermore the Box-Pierce Q Statistic is lower than the Chi-Square Test Statistics, indicating the residuals are white noise process. The graph below shows the comparison of the ARI(1,1) against the original data:
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