Time Series Modeling: Gasoline Prices

Session: Spring 2012

xxxxx xxxx
Introduction
Over the past many decades, huge leaps in technology and infrastructure have led to a massive increase in demand for energy, and in this regard demand for fuels specifically Gasolinel has increased dramatically. While these changes may be attributed to many factors, a time series model based on past prices may easily be able to bring together all that information contained in those prices. This project takes into account historical Gasolinel prices to build an ARIMA model that can be used to project future Gasoline prices.
Data:

The data used for the formulation of this model was taken from:

http://www.indexmundi.com/commodities/
This source contained monthly data for the last twenty five years (i.e. from Sep 1987 to Sep 2012). In order to develop time series model, an eleven-year period data (132 months) was selected starting from May 1993 to April 2004. The data from May 2004 to September 2012 was then used to test the accuracy of the model.

Following chart illustrates trends in Crude Prices over the period of May 1993 to April 2004.
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The graph as shown above does no visible signs of seasonal trend in the data and hence does not require any seasonal adjustment. 
Stationarity Test:

As a check for stationarity, one of the ways considered for a data to be a stationary process is if its statistical parameters, such as mean and standard deviation, do not vary over time. Another parameter that must not vary with time is the autocorrelation. The chart below illustrates the dependence on time of the autocorrelation.
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First Difference:

Since the original data is not stationary, the first difference of the data was analyzed. A plot of the first difference is shown below:
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The plot of first difference displays fewer trends than the original series. The following chart displays the correlogram of the first differences to further examine the data for Stationarity:
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The autocorrelation function of the first difference does not point out any dependence on time. It demonstrates random fluctuations of both positive and negative values, centered towards zero thus, indicating a stationary process. However, additional testing will be done to confirm this observation by performing Bartlett’s test.
Bartlett’s test:

If a series of length T is generated by a white noise process, the estimates of the (partial) autocorrelation coefficients are approximately normally distributed random variables with zero mean and variance 1/T. The confidence limits are then equal to ± z1-α/2 /
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, with α being the desired significance level and z the percent point function of the standard normal distribution.

Hence, according to this test if a process is white noise, approximately only five percent of the autocorrelation data points will lie outside at the 95% confidence interval centered on zero. The approximate standard deviation of the process is the reciprocal of the square root of the number of terms. In our process we have the following parameters:

σ = 1/
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 = 0.087039

95% Confidence Interval = ±1.96*σ = ±1.96*0.087039=± 0.170596
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By adding the confidence interval to our correlogram of first difference, it can be seen that only 5 out of the 132 observations fall outside of the interval. This is equivalent to around 4% and thus implies that the first difference is stationary.
Model Parameterization:

After arriving at a stationary data, we will fit our data using an autoregressive model (AR (p)), using p = 1, 2 and 3.  Since we are using the first difference, this is equivalent to ARIMA (p, 1, 0) models.

By Using Excel’s regression data analysis add-in, the following is a summary of the regression results along with the resulting AR equations:

AR (1): Yt = -0.0040Yt-1 + 0.0041 + εt

	Regression Statistics

	Multiple R
	0.004081871

	R Square
	0.000016661

	Adjusted R Square
	-0.007735147

	Standard Error
	0.066853196

	Observations
	131


	
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.0041
	0.005856337
	0.69

	X Variable 1
	-0.0040
	0.086721957
	-0.05


AR (2): Yt =0.0045Yt-1 - 0.3120Yt-2 +0.0058+ εt
	Regression Statistics

	Multiple R
	0.31700

	R Square
	0.10049

	Adjusted R Square
	0.08633

	Standard Error
	0.06379

	Observations
	130


	
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.0058
	0.0056
	1.0338

	X Variable 1
	0.0045
	0.0841
	0.0532

	X Variable 2
	(0.3120)
	0.0828
	(3.7660)


AR (3): Yt =0.02976Yt-1 - 0.31336Yt-2 +0.07603Yt-3 + 0.00532+ εt

	Regression Statistics

	Multiple R
	0.322628

	R Square
	0.104089

	Adjusted R Square
	0.082587


	Standard Error
	0.064108

	Observations
	129


	
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.00532
	0.00569
	0.93573

	X Variable 1
	0.02976
	0.08931
	0.33328

	X Variable 2
	(0.31336)
	0.08458
	(3.70493)

	X Variable 3
	0.07603
	0.08802
	0.86381


The following table presents a summary of the results from the auto regression: 

	
	Sum of Coefficients
	R-Square
	Adjusted R-Square
	Durbin-Watson Statistic
	Box - Pierce Q Statistic
	Chi - Squared 10%

	AR(1)
	       (0.004) 
	    0.0000167
	   (0.00774)
	1.9776   
	 97.749 
	  147.805 

	AR(2)
	      (0.3075)
	    0.10049 
	     0.08633 
	1.9469 
	 74.2663 
	  146.724 

	AR(3)
	      (0.2076)
	    0.104089
	   0.082587 
	1.9792 
	73.5505 
	  145.643 


From the above table, it can be seen that the sum of coefficients for each model is less than 1, suggesting the models are stationary.  The Durbin-Watson statistic is around 2 for each, suggesting no serial correlation.  Besides, the Box-Pierce Q statistics are lower than Chi-Squared critical value. We therefore, cannot reject the null hypothesis that the residuals are formed by a white noise process.
Model Selection and Forecasting:

In order to decide the best fit out of the three autoregressive models for the data, we will first look at the Adjusted R-Square statistic which provides a general indication of how well each model formula fits the data. From the table provided above, it can be seen that though there is not much significant difference between the three models, the Adjusted-R square value is highest for the AR (2) model.

The next statistic to be observed is the Durbin-Watson Statistic. The provided table shows that all the three models are showing the Durbin-Watson Statistics pretty closer to 2. Out of these, the highest value is shown by the AR (3) model while AR (1) model is also very close with a negligible difference.

On the basis of all of the above statistics that it’s safe to conclude that AR (2) process (Yt =0.0045Yt-1 - 0.3120Yt-2 +0.0058+ εt) is an appropriate fit for the data, having the highest Adjusted R-Square value. 
The chart below illustrates the fit of the AR(2) model on actual data taken from May 2004 to September 2012.
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Conclusion:

Although the forecasted values are a little lower most of the time as compared to the actual prices, still the model does a decent job of fitting to the actual time series. Also, the shapes of the two series are very similar. Changes in crude oil prices have seen dramatic change as many factors like growing industries and in contrast the focus on alternate energy sources continues to affect demand. Further, with successful explorations these trends will consequently change.
The model does a good job in projecting values based on the information contained in past couple of prices, while its reliability will be compromised with new developments.
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