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Time Series

Student Project

Fitting a Time Series Model to Quarterly U.S. Gross Domestic Product Data

This project intends to fit an ARIMA process to quarterly Gross Domestic Product (GDP) data for the United States from January 1947 to January 2006.  There are three major steps in construction of a time series model – model specification, parameter estimation and diagnostic checking.  This project will perform as much of each step as possible, but advanced statistical software may be required for some parameter estimation and diagnostic checking.  If I cannot perform the calculations, I will outline the steps instead.  The data to be analyzed is provided by the NEAS.  It has already been adjusted for seasonality so there will be no need to check for it.  The raw data and the preliminary calculations on that data set are located in the “GDP Data” tab of the attached Excel document.

The first step in specifying a time series model is to simply plot the data to look for trends.  This chart is shown below:
[image: image1.emf]Gross Domestic Product by Quarter Ending January 2006
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This chart shows that there is an exponential trend in GDP over time, and thus nonstationary, so I take natural logarithms to linearize the trend.  The chart of the logarithmic GDP data is shown below:
[image: image2.emf]Logarithmic GDP Ending January 2006
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This time series still has a trend but the trend is now linear and I know that many economic time series are homogeneous – can be made stationary by differencing the time series one or more times - so I now take first differences in an attempt to make it stationary series.  The chart of the first differenced logarithmic data is shown below:

[image: image3.emf]First Differences of Ln GDP Ending January 2006
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This time series appears to be stationary, so I inspect a chart of the sample autocorrelations to ensure that this is the case.  This chart is shown below:
[image: image4.emf]Sample Autocorrelations of 1st Differenced Logarithmic GDP Ending January 2006
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Interestingly, this chart does not confirm stationarity of this series.  In this chart I see three distinct eras with three different means.  The mostly positive sample autocorrelations from periods 1 to 53 indicate that those periods share the same mean.  The same can be said for the negative sample autocorrelations from periods 54 to 96, decreasing from 0 to roughly -0.15.  The third era I see are the negative sample autocorrelations from periods 97 to 140, increasing from -0.15 to 0.  What this means for our analysis is that I cannot fit a model to this entire time series due to the fact that its mean changes over time.  As such, I will fit a model to the era containing the first 53 periods, January 1947 to January 1960, instead.

Continuing our construction of a time-series model on this smaller time series, I again calculate natural logarithms and first differences and chart the sample autocorrelations of the resulting time series.  This natural logarithmic first-differenced time series will be used as our time series for the rest of the analysis.  This new data all following calculations can be found in the “GDP Data 47 – 60” tab of the attached Excel document.  The charts of the new time series and its sample autocorrelations are shown below:
[image: image5.emf]First Differences of Ln GDP Ending January 1960
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[image: image6.emf]Sample Autocorrelations of 1st Differenced Logarithmic GDP Ending January 1960
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These sample autocorrelations have the dampened sinusoidal shape.  This shape is an indication of a stationary AR(2) process.  I have now confirmed that our new time series is stationary and no further differencing is necessary.


The next step in specifying the model is to test if the time series is generated by a white noise process.  If the time series is white noise, I cannot fit an ARIMA model to it.  To test if the time series is white noise I use the Durbin-Watson, Bartlett’s, and Box and Pierce Tests.

The Durbin-Watson statistic is a test of whether or not the error terms of the time series are correlated with one another.  A Durbin-Watson statistic close to 2 indicates no serial correlation.  The built-in regression data analysis tool in Microsoft Excel provides us with the error terms from an ordinary least squares regression on the time series and its first lag.  I use those values to calculate the Durbin-Watson statistic of our time series.  I calculate a Durbin-Watson statistic of 1.89, which is not significantly different from 2.  It is worth noting that the Durbin-Watson statistic is not 100% accurate when using a lagged regression, but it gives us enough information to conclude that the error terms of our time series are not serially correlated.

I now use Bartlett’s Test to determine if any particular autocorrelation coefficient is different from zero.  Bartlett states that if a time series is generated by a white noise process, its sample autocorrelation coefficients are distributed by a normal distribution with mean zero and standard deviation 1/√(T), where T is the number of observations in the time series – 53 in this case.  Thus, if any sample autocorrelation is greater in absolute value than 2/√(53) = 0.2747, then I can be 95% certain that the true autocorrelation coefficient is different from zero.  HoIver, by simple hypothesis testing I know that even if a time series is generated by a white noise process, I could expect 0.05*(53) = 2.65 ≈ 3 autocorrelations to be outside of two standard deviations from the mean (greater in absolute value that 0.2747).  I calculate that the first, second, fourth, fifth, and sixth sample autocorrelations are greater in absolute value than 0.2747 and thus I are 95% certain that the corresponding true autocorrelations are different from zero.  Since I would only expect three autocorrelations greater than 0.2747 in absolute value in a white noise process, I can be fairly certain that this time series does not come from a white noise process.

Using the same residuals I used to calculate the Durbin-Watson statistic of our time series, I are able to calculate the Box and Pierce Q statistic.  This statistic tests whether or not the hypothesis that all of the residuals of our time series come from a white noise process.  I calculate Q = T * ∑ rk2 for the residuals of the first k sample autocorrelations.  This statistic is the sum of normally distributed random variables of mean 0 and standard deviation 0.1374 and thus is approximately distributed as a chi-square statistic with K-p-q degrees of freedom.  I want to test the hypothesis that all autocorrelations are equal to zero, so I test a chi-square statistic with K-1 degrees of freedom.  The Q statistic for the first 25 observations for 24 degrees of freedom is 20.40, which is less than the 90% critical value of 33.20, so I cannot reject the hypothesis that all the residuals come from a white noise process.  The combination of the results of the Durbin-Watson, Bartlett’s, and Box and Pierce Tests leads us to the conclusion that our time series model does not come from a white noise process.


Now that I know that our time series is not the result of a white noise process, I can fit an ARIMA model to the time series.  Logically, GDP growth is a mean-reverting process that is also influenced by the growth in the previous period or two; essentially, a period of large growth may be folloId by more periods of large growth, an indication of a booming economy, but in time the GDP growth will return to its mean.  The ARIMA models that makes the most sense following this logic are AR(1) and AR(2).  Looking at the chart of the sample autocorrelations again, I see that they have the dampened sinusoidal shape, which is indicative of an AR(2) process.  Since I have taken first differences, I Ill fit an ARIMA(2,1,0) model.

I can use the Yule-Walker equations to estimate the parameters of the ARIMA(2,1,0) process.  The Yule-Walker equations are shown below:
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 EMBED Equation.3  [image: image8.wmf]
I do not have actual autocorrelations, so I use the sample autocorrelations in their place.  I now have two equations which can be solved simultaneously to obtain the coefficients 
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.  These calculations are difficult to perform without the use of advanced statistical software, so I do not calculate these coefficients here.

After calculating the autoregressive coefficients, the next step would be to perform diagnostic checking.  I would test whether or not the residuals based on the ARIMA(2,1,0) model Ire a white noise process using the Box and Pierce test, similar to how I performed this calculation earlier based on the residuals of a simple least-squares estimate.  If I found that the residuals Ire not a white noise process, I would specify a new model, calculate new parameters, and perform diagnostic checking again, repeating this process until a suitable model was found.  Since I Ire not able to calculate the autoregressive coefficients, I cannot perform diagnostic checking on this model either.

This analysis performed the steps necessary to fit an ARIMA model to a given time series.  It was not possible to fit a time series to the original data set due to a shift in the mean over time, so I decided to fit a model to one era of that time series instead.  I tested for stationarity, determined that the time series was not the result of a white noise process, specified a model base on the sample autocorrelations, outlined the steps to calculate the parameters of the ARIMA(2,1,0) model that was specified, and gave a brief overview of how to perform the diagnostic checking that would be the final step in determining if the model I selected would be a good selection.  It is possible that this model may not be best, but the steps taken in this project created a parsimonious model that would be able to predict future values of GDP (future being relative to January 1960).  In the real world, many models should be created and tested to ensure that the modeled forecast is as accurate as possible within reasonable time and cost constraints.
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