NEAS Time Series Project Fall 2012
By: xxxxx xxxxxxxx

Time Series Student Project: Fitting an ARIMA Process to Monthly Cotton Prices
Introduction
The objective of this project is to fit an ARIMA model to the monthly cotton price time series to see if an autoregressive or moving average process explains the observed values. The ARIMA modeling process contains three stages: (1) Model Specification, (2) Model Fitting, and (3) Model Diagnostics (Box and Jenkins, 1976). This report provides a description of the statistical techniques I used and a summary of my findings at each stage of the ARIMA modeling process. The attached Excel workbook (“TS Project Cotton - Carla Newcombe – FINAL.xls”) contains all of the data and analysis used in my project. I may refer to specific tabs of this Excel workbook throughout my report.
Data

The time series data used for this project is the monthly cotton prices in US cents per pound from January 1980 to December 2012. This data set was taken from: http://www.quandl.com/IMF-International-Monetary-Fund/PCOTTIND_USD-Cotton-Price 
. The raw data is shown in the <Cotton Data_RAW> tab of my Excel workbook.
Model Specification
The first step of the Model Specification stage is to graph the time series to identify patterns (see below).
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This chart appears somewhat stationary with most cotton prices between 50 cents per pound and 100 cents per pound, and there is a very noticeable upward spike around period 373. Also, there is no seasonality apparent in this graph. In order to verify whether this series is stationary, I will (1) prepare and analyze the correlogram and (2) use the Unit Root Test. The correlogram graphs the sample autocorrelations as a function of lag time. Examining the decay in the sample autocorrelation function can help us to determine whether a series is stationary and can also help us to select classes of ARIMA models that may be appropriate. The correlogram of monthly cotton prices is shown below:
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The correlogram of monthly cotton prices shows a linear decline to zero from lag 1 to lag 25. Also, there appears to be 5 separate time periods, each with a different mean: (i) lags 1 to 41 have a positive mean, (ii) lags 42 to 151 have a negative mean, (iii) lags 152 to 210 have a positive mean, (iv) lags 211 to 321 have a negative mean and (v) lags 321 to 395 have a positive mean. These observations indicate that the time series is likely not stationary, but I will also perform the unit root test to confirm this. The unit root test regresses the time series against its one-period lagged values, which is an AR(1) model. The x-variable coefficient represents the φ1 of the AR(1) model. I then performed the one-period lagged regression of the cotton price time series using the regression data analysis tool in excel (the output summary is shown in the < Unit Roots (CotPric)> tab of my excel workbook). The regression summary output indicates that the x-variable coefficient (i.e. φ1) is 0.97 which is approximately equal to one.  φ1  approximately equal to one implies that the time series is a random walk and is not stationary. Therefore, based on the correlogram and the result of the unit root test, I conclude that the cotton price time series is not stationary.
Since the cotton price times series is not stationary, I will now examine the time series of the first difference of monthly cotton prices. The time series plot of first differences is shown below:
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The graph appears to be mean reverting and stationary, with a noticeable increase around period 373 (I will consider these points to be outliers). In order to verify stationarity, I will perform the same two tests as before: (1) examine the correlogram and (2) perform the unit root test. The correlogram of the first difference time series is shown below:
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The correlogram of the first difference time series decreases exponentially from 0.45 to -0.2  in approximately 4 lags and then moves back towards 0. After the sixth lag, the correlogram appears to be random fluctuations around zero (i.e. a white noise process). This correlogram is representative of a stationary AR(1) or AR(2) process. The average of the sample autocorrelations is approximately zero. The sample standard deviation of the autocorrelations is 0.0489, so 2 sample standard deviations is 0.0978. Almost all of the sample autocorrelations after lag 4 are within 2 standard deviations of zero, so the sample autocorrelations of the difference time series appear to be a white noise process. If the sample autocorrelations of the first differences is a white noise process, then taking the first difference is appropriate. In order to confirm stationarity, I will also perform the unit root test for the first difference time series of cotton prices. The Excel regression summary output for the one period lagged regression is shown on the <Unit Roots (1st Diff CotPric)> tab of my Excel workbook. The regression summary output indicates that the x-variable coefficient (i.e. φ1) is 0.45. Since φ1 = 0.45 < 1, the unit root test suggests that that the first difference time series of cotton prices is stationary. Therefore, based on the correlogram and the result of the unit root test, I conclude that the first difference of cotton price time series is stationary.
Now that I have concluded that the first difference time series is stationary, I will need to select an ARIMA model for the observed data. As I mentioned earlier, the correlogram of the first difference time series is representative of a stationary AR(1) or AR(2) model because it decreases exponentially from 0.45 to -0.2  in the first 4 lags, moves back to zero by lag 6, and then after the sixth lag, the correlogram appears to be a white noise process. The theoretical autocorrelations of an AR(1) model with 0< φ1<1 decrease exponentially from  φ1 to 0. Although the correlogram of the difference time series drops down to -0.2, this point may simply be a random fluctuation from zero and an AR(1) model may be appropriate. However, this drop down to -0.2 may also be representative of a dampening sine wave pattern, which is indicative of a stationary AR(2) model. Since I am taking the first difference of the original cotton price time series, I will select either an ARIMA(1,1,0) or ARIMA(2,1,0) for the observed data. I will fit parameters for both models, and then decide which model is more appropriate.

Model Fitting

The next stage of the ARIMA modeling process involves estimating the parameters for the chosen ARIMA process. For an AR(p) model, the estimated coefficients for φ1, φ2 ... φp are the solutions to the sample Yule-Walker equations under both the least-squares estimation method and the method of moments estimation method. These estimated coefficients for φ1, φ2 ... φp are called the “Yule-Walker estimates”. For an ARIMA(1,1,0) process, the parameter estimate of φ1 is simply the lag 1 sample autocorrelation of the first difference time series. For the series of the first difference of cotton prices, the lag 1 sample autocorrelation is 0.4545, so I estimate φ1=0.4545. For an ARIMA(2,1,0) process, the Yule-Walker equations are equivalent to the following 2 equations: 

(1) φ1 = ř1 *(1- ř2)/(1- ř12) 

(2) φ2 = (ř2- ř12)/(1- ř12)
where řk is the is sample autocorrelation at the kth lag of the first difference time series. For the series of the first difference of cotton prices, ř1 = 0.4545 and ř2 = 0.1611. If we plug these values into the Yule-Walker equations, we arrive at the estimates φ1 = 0.4806 and φ2 = -0.0573. 
After estimating the parameters for both the ARIMA(1.1.0) and the ARIMA(2,1,0) models, I note that my estimate of φ1(i.e. 0.4545) for the ARIMA(1,1,0) model is very close to my estimate of φ1 (i.e. 0.4806) for the ARIMA(2,1,0) model. I also note that my estimate of φ2 (i.e. -0.0573) for the ARIMA(2,1,0) model is not statistically different from zero (recall that 2 sample standard deviations of the sample autocorrelations of the first difference series is 0.0978). This fact supports the choice of the ARIMA(1,1,0). Also, by the principle of parsimony, the model selected should require the least number of parameters that will sufficiently represent the observed series. Therefore, I decide to use an ARIMA(1,1,0) model with φ1 = 0.4545 to represent the cotton price time series. Finally, I will estimate the mean of the first difference time series, μ, as the average of the first difference time series values, 0.0135443. For an ARIMA(1,1,0) model,  μ=0.013544 implies that the constant term of the model, θ0 = μ*(1- φ1) = 0.013544*(1-0.4545) = 0.0073881. Therefore, my specified model is an ARIMA(1,1,0) with φ1 = 0.4545 and constant term θ0 =  0.0073881. The model looks as follows:

ΔYt = 0.0073881 + 0.4545 *ΔYt-1 + et.
Model Diagnostics
The third stage of the ARIMA modeling process involves assessing the quality of the ARIMA(1,1,0) model I have chosen. I will perform two tests to check that the residuals of the ARIMA(1,1,0) model with φ1 = 0.4545 and θ0 =  0.0073881 follow a white noise process: (1) I will calculate the Durbin-Watson Statistic and (2) I will calculate the Box-Pierce Q statistic. These 2 tests can be found on the < BPQ,DW AR(1)(1st Diff CotPric)> tab of my Excel workbook. I used my estimated model to calculate a predicted value for the first difference time series at each period. The residual (i.e. the error term) at each period is equal to the actual first difference time series value subtract the predicted first difference value. The Durbin-Watson statistic is equal to the sum of the residual difference squared divided by the sum of the residuals squared. A Durbin-Watson statistic close to 2 implies that there is no serial correlation between the residuals. I calculate the Durbin-Watson statistic for the cotton price time series model to be 1.94. 1.94 is very close to 2 so this test indicates that there is no correlation between the error terms. The Box-Pierce Q statistic is equal to n*(ř12, ř 22+...+ ř k2), where řk is the is sample autocorrelation of the residuals at the kth lag and n is the length of the first difference time series. It is a test that takes into account the sum of magnitude of the residual correlations across k lags, rather than examining the residual correlations individually. The Box-Pierce Q statistic tests the hypothesis that the residuals are independently distributed. For large n, the calculated Q value should approximately follow a chi-square distribution with K-p-q degrees of freedom. In my specified model, p = 1 and q = 0, so the calculated Q value should follow a chi-square distribution with K-1 degrees of freedom. For lag k = 60, my calculated Q value is 65.6. The critical chi-square value for a 10% significance level at 59 degrees of freedom is 73.3. Since my calculated Q value is less than 73.3, I cannot reject the hypothesis that the residuals are independent white noise. Therefore, based on the Durbin-Watson statistic and the Box-Pierce Q statistic test results, I conclude that the residuals follow a white noise process.
Since my tests indicate that the residuals are white noise, I conclude that the model I have specified is acceptable and I have completed the three stages of the ARIMA modelling process. If I had discovered that the residuals did not follow a white noise process, then I would go back to stage one of the ARIMA modeling process (i.e. the model specification stage), identify a new ARIMA model, estimate the parameters, and perform model diagnostics. I would repeat this process until I found an acceptable model.
Conclusions
In conclusion, I believe that a sufficient model for the cotton prices time series is an ARIMA(1,1,0) model with φ1 = 0.4545 and constant term θ0 =  0.0073881. The model looks as follows:
ΔYt = 0.0073881 + 0.4545 *ΔYt-1 + et. I arrived at this model by following the 3 steps of the ARIMA modeling process: model identification, parameter estimation, and diagnostic checking. In the model identification phase, I plotted the original time series of cotton prices to look for trends. I then checked for stationarity by analyzing the correlogram and applying the Unit Root Test. These tests indicated that the time series was not stationary, so I decided to test the first difference time series. I plotted the first difference time series and checked for stationarity  by analyzing the correlogram and applying the Unit Root Test. Based on these tests, I concluded that the first difference series was stationary. Based on the decay of the autocorrelations shown in the correlogram, I concluded that the most appropriate model was either an ARIMA(1,1,0) or ARIMA(2,1,0). I estimated the parameters for both models using the Yule-Walker equations. The estimates for φ1 under both models were similar, and the estimate for φ2 under the ARIMA(2,1,0) was near to zero. Based on these estimates and the principle of parsimony, I decided that the best model was an ARIMA(1,1,0) model with φ1 = 0.4545 and constant term θ0 =  0.0073881. I then performed model diagnostics by testing whether the residuals followed a white noise process. The Durbin-Watson statistic and the Box-Pierce Q statistic tests both indicated that the error terms followed a white noise process. My final conclusion is that my specified model is acceptable and can be used to predict future cotton prices.
� “International Monetary Fund: Cotton Price”. Taken from: http://www.quandl.com/IMF-International-Monetary-Fund/PCOTTIND_USD-Cotton-Price
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