Fox Module 15: Advanced interactions

(The attached PDF file has better formatting.)

Homework assignment: F test with interactions

Tables 7.1 and 7.2 on page 139 are tested on the final exam. This homework assignment explains the computations for the F test in these tables.

The variables mean: I = income, E = education, and T = type

The regression sums of squares are

Model	Terms	Sum of Squares	df
1	I, E, T, I × T, E × T	24,794	8
2	I, E, T, I × T	24,556	6
3	I, E, T, E × T	23,842	6
4	I, E, T	23,666	4
5	I, E	23,074	2
6	I, T, I × T	23,488	5
7	E, T, E × T	22,710	5

Table 7.2 shows the degrees of freedom and sum of squares in the numerator of the F test.

Source	Models	Sum of Squares	df	F
Income	3 – 7	1,132	1	28.35
Education	2 – 6	1,068	1	26.75
Туре	4 – 5	592	2	7.41
Income × Type	1 – 3	952	2	11.92
Education × Type	1 – 2	238	2	2.98
Residuals		3,553	89	
Total		28,347	97	

For each model,

- The residual sum of squares is $\sum \left(Y \hat{\hat{Y}}\right)^2$
- The regression sum of squares is $\sum \left(\overline{Y} \hat{Y}\right)^2$
- The total sum of squares is $\sum (\overline{Y} Y)^2$

- A. Why does the total sum of squares (TSS) not depend on the model? What is the TSS in this illustration?
- B. Which model has the smallest residual sum of squares (RSS)? How do we know this even without computing any figures?
- C. How do we test the significance of income? What is the null hypothesis? How the F-ratio is computed? (Show the calculations.)
- D. How do we test the significance of education × type? What is the null hypothesis? How the F-ratio is computed? (Show the calculations.)

The following comments may help you understand the exhibits:

The degrees of freedom in Table 7.1 on page 139 are the number of explanatory variables in the model (k). The degrees of freedom are actually N-k-1. But this illustration focuses on the degrees of freedom for the numerator of the F test, which is the difference in the number of variables in the full vs reduced models. N-1 is the same for all models, so it drops out of the difference.

For the number of explanatory variables:

- I and E are one explanatory variable each.
- T, I × T, and E × T are two explanatory variables each.

The total sum of squares is 28,347. The sample has 98 data points, so the total sum of squares has 98 - 1 = 97 degrees of freedom. The full model (Model 1) has a regression sum of squares of 24,794, so it has a residual sum of squares of 28,347 - 24,794 = 3,553. This residual sum of squares has 98 - 8 - 1 = 89 degrees of freedom.

Show the calculation of the F-ratio for Parts C and D.