Regression analysis Module 15: Advanced interactions
(The attached PDF file has better formatting.)
Selecting the optimal model using sums of squares and degrees of freedom (F test)

- Tables 7.1 and 7.2 on page 139 are tested on the final exam.
- This posting explains the computations for the F test in these tables.

The variables are: $I=$ income, $E=$ education, and $T=$ type
The regression sums of squares are

Model	Terms	Sum of Squares	$d f$
1	I, E, T, I $\times \mathrm{T}, \mathrm{E} \times \mathrm{T}$	24,794	8
2	$\mathrm{I}, \mathrm{E}, \mathrm{T}, \mathrm{I} \times \mathrm{T}$	24,556	6
3	$\mathrm{I}, \mathrm{E}, \mathrm{T}, \mathrm{E} \times \mathrm{T}$	23,842	6
4	$\mathrm{I}, \mathrm{E}, \mathrm{T}$	23,666	4
5	I, E	23,074	2
6	$\mathrm{I}, \mathrm{T}, \mathrm{I} \times \mathrm{T}$	23,488	5
7	$\mathrm{E}, \mathrm{T}, \mathrm{E} \times \mathrm{T}$	22,710	5

For each model,

- The residual sum of squares is $\sum(Y-\hat{\hat{Y}})^{2}$
- The regression sum of squares is $\sum(\bar{Y}-\hat{Y})^{2}$
- The total sum of squares is $\sum(\bar{Y}-Y)^{2}$

The total sum of squares does not depend on the model; it is 28,347 in this illustration.
Jacob: All three formulas for the sums of squares use only Y values, not X value or ß's.
Rachel: The regression sum of squares and the residual sum of squares use the fitted Y values, which depend on the X values. They vary by model.

The degrees of freedom in Table 7.1 on page 139 are the number of explanatory variables in the model (k). The degrees of freedom are actually $\mathrm{N}-\mathrm{k}-1$. This illustration shows the degrees of freedom for the numerator of the F test, which is the difference in the number of variables in the full vs reduced models. $\mathrm{N}-1$ is the same for all models, so it drops out of the difference.

For the number of explanatory variables:

- I and E are one explanatory variable each.
- $T, I \times T$, and $E \times T$ are two explanatory variables each.

Table 7.2 shows the degrees of freedom and sum of squares in the numerator of the F test.

Source	Models	Sum of Squares	$d f$	F
Income	$3-7$	1,132	1	28.35
Education	$2-6$	1,068	1	26.75
Type	$4-5$	592	2	7.41
Income \times Type	$1-3$	952	2	11.92
Education \times Type	$1-2$	238	2	2.98
Residuals		3,553	89	
Total	28,347	97		

The total sum of squares is 28,347 . The sample has 98 data points, so the total sum of squares has 98-1 = 97 degrees of freedom.

The full model (Model 1) has a regression sum of squares of 24,794 , so it has a residual sum of squares of $28,347-24,794=3,553$. This residual sum of squares has $98-8-1=89$ degrees of freedom.

The denominator of the F ratio (for all tests) is $3,553 / 89=39.921$.

Illustration: To test the significance of income, we contrast models 3 and 7.
The sum of squares is 23,842 for Model 3 and 22,710 for Model 7 . The difference in the sum of squares is $23,842-22,710=1,132$.

Model 3 has 6 explanatory variables and Model 7 has 5 explanatory variables. The degrees of freedom in the numerator of the F test is $6-5=1$.

- The numerator of the F ratio is $1,132 / 1=1,132$.
- The F ratio is $1,132 / 39.921=28.356$.

Illustration: To test the significance of education \times type, we contrast models 1 and 2 .
The sum of squares is 24,794 for Model 1 and 24,556 for Model 2. The difference in the sum of squares is $24,794-24,556=238$.

Model 1 has 8 explanatory variables and Model 2 has 6 explanatory variables. The degrees of freedom in the numerator of the F test is $8-6=2$.

- The numerator of the F ratio is $238 / 2=119$.
- The F ratio is $119 / 39.921=2.981$.

To find the p-values in Table 7.2, use a table of the F-distributions or statistical software, such as Excel. If an exam problem asks for a p-value, it will give a table.

