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Date: 4/23/2013
TITLE
Time series model for Prescription Drug prices in the US from last 10 years. 
DATA
The data was obtained from the Bureau of Labor Statistics. The Consumer Price Index Data can be obtained from the following website.

http://www.bls.gov/data
For data on consumer price index on Prescription Drug prices for all urban consumers. The series name is CUUR0000SEMF01.

The data consists of a time series of monthly Prescription Drug CPI data from Jan 2003 through Feb 2013 containing 122 observations. It is not seasonally adjusted.

GOAL
The goal is to create a time series model that can most accurately predict the future CPI of Prescription Drug prices using ARIMA modeling and statistical techniques.
SCENARIO 1: Raw Data of Prescription Drug Consumer Price Index.
The raw data was plotted on a chart as shown below. [image: image1.wmf]0.0
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This data appears to be trending upward and possibly exponential with some random variations. This is not a stationary time series and has a strong upward drift. Since it is exponential, a natural log is taken followed by the first difference.
Although this time series does not seem to vary by a big amount, taking differences will greatly magnify the roughness in this time series.
SCENARIO 2: FIRST DIFFERENCE OF THE LOGARITHM OF THE RAW DATA
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This chart exhibits some randomness however the sample autocorrelation must be checked on this time series at various time lags. The chart below shows the sample auto correlogram.
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From this chart, there is clearly some seasonality. The sample auto correlogram shows higher correlations at lags 12, 24 and 36 than other lag periods.
SCENARIO 3: USING SEASONALLY ADJUSTED CPI DATA
In this scenario the CPI data is first seasonally adjusted using a 12 period central moving average. Then the log of the first difference is studied using a sample correlogram.

The seasonal indexes were calculated to be as follows.
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From this correlogram, it appears that the periodicity at 12 months is removed. The correlation at multiples of 12 period lags appear to be random. 
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SCENARIO 4: USING ARIMA (1,1,0) MODEL ON SEASONALLY ADJUSTED DATA.

In this scenario, an ARIMA (1,1,0) model is used on the log of the seasonally adjusted CPI data. The regression summary is shown below.
 [image: image6.wmf]SUMMARY OUTPUT

Regression Statistics

Multiple R

0.297531328

R Square

0.088524891

Adjusted R Square

0.080800526

Standard Error

0.002689614

Observations

120

ANOVA

df

SS

MS

F

Significance F

Regression

1

8.29053E-05

8.29053E-05

11.46047437

0.000965988

Residual

118

0.000853615

7.23402E-06

Total

119

0.00093652

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

0.001831168

0.00033328

5.494383998

2.29314E-07

0.001171183

0.002491153

X1

0.295510546

0.087291446

3.38533224

0.000965988

0.12264972

0.468371372


The residual plot from the regression is shown below. [image: image7.wmf]-
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From the residual plot as obtained above, there does not appear to be any specific pattern remaining. It can be considered to be white noise.
The Box Pierce Q-statistic from the residuals is found to be 59.41 while the critical value is 135.90. So the null hypothesis that the residuals are white noise cannot be rejected.
The Durbin Watson Statistic is 1.9318. It is very close to 2. Using this statistic, the residuals are not distinguishable from white noise.

Finally the ARIMA(1,1,0) model’s equation can be rewritten as follows.

X(n) = -0.000256082+0.295510546 X (n-1)

The chart below shows the original CPI values compared with the predicted values using the ARIMA(1,1,0) model after adding back the seasonal variation.
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CONCLUSION
The ARIMA (1,1,0) model is selected for modeling this time series after removing the seasonality and taking the logarithm of the time series.

