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Introduction
While looking for data to use for my student project, I came across data on the number of farms and acreage of farmland by state.  I’m not a farmer, and I’m not a state, but the data looked like it might be interesting to work with if I linked it up with some other data.  In pondering the idea of farms and farmland, I thought of a few statistics that might exhibit interesting relationships with farmland acreage – state population, state GDP, and state size.  I pulled this data from various sources and linked it into one aggregate data set.  I have no real question or goal in mind here.  I am mostly just interested in employing the statistical techniques I learned in this course and maybe learning something interesting about the relationships between the data points.
Data

I obtained my data from multiple sources and aggregated it on my own.  Each source was accessed on 04/20/2013.
Farmland data:

· http://www.census.gov/compendia/statab/cats/agriculture/farms_and_farmland.html
Land area data:

· http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_area
Population data:

· http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
GDP data:

· http://lwd.dol.state.nj.us/labor/lpa/industry/gsp/gsp_index.html
In addition to the data as provided, I derived some additional metrics from the data: The number of farms per person by state, farm acreage per person by state, farm acreage per square mile of area by state, population per square mile by state, per capita state GDP, and state GDP per square mile of area by state.  I thought these metrics might yield some interesting results in my regression analysis.
Examination of the Data
Once I had the data, I had to figure out what to do with it.  As stated above, I derived some metrics on my own from the base data.  The base data by itself looked like it would be of limited use in a regression analysis, since states vary widely in population and size.  However, metrics such as per capita GDP, farm acreage per square mile of state area, and population density can be compared side-by-side.
I thought it would be interesting to do two analyses:  One where the response variable is per capita state GDP, and another where the response variable is state GDP per square mile.  I made scatterplots of a couple variables for each response variable that I thought may exhibit a relationship to the GDP.
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This graph is a scatterplot of the number of acres of farmland per square mile in a state as the independent variable, and the state GDP per person as the response variable.  The data doesn’t look particularly linear.  I considered whether a transformation of the data would make this plot more linear.  For the response variable, a power transformation probably wouldn’t be helpful since the ratio of the highest value to the lowest value is not very large (it’s about 2).  For the independent variable, a power transformation would bring in the higher values, but I don’t think it would make the data appear more linear.  And so I will not perform a transformation on this data. 
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This is a scatterplot of the number of people per square mile in a state, plotted against the per capita state GDP.  This seems to exhibit a more linear trend than the previous scatterplot.  The values are more spread out across the range of X.  This looks like a good candidate for a linear regression.
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This is a scatterplot of the density of farmland in a state to the state’s GDP per square mile.  I thought this one would exhibit more of a trend than it seems to, since farm acreage is direct employment of land for production, and the response variable is an indicator of production by area.  But really, after some thought, it makes sense that this graph might not exhibit obvious trends.  After all, land can be put to many productive uses, some more and some less productive than farmland.  And agriculture is just a part of a state’s GDP so really there is a lot of room for other various contributors to GDP density.
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This is a scatterplot of population density against GDP density.  It appears to exhibit a linear trend.  This data looks like a good candidate for a linear least squares regression.
Two-Variable Analysis #1
I performed two sets of two-variable analyses.  The first set uses GDP density as the response variable – one with population density as the explanatory variable, and the other with farms acreage per square mile as the explanatory variable.  The first analysis is on the Population Density vs. GDP Density data plotted above.  My first step was to run a linear least-squares regression and see how the line of least squares fit the data.  The regression was run using Excel’s regression analysis add-in.  The least squares regression results in the following model:
Ŷ = -95422 + 55721.72X

Where X is the explanatory/independent variable and Ŷ is the predicted value of GDP Density.
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This graph shows the least squares fit line graphed against the actual data points.  Visually, it looks like a good fit.  The regression out put from Excel is below:
	SUMMARY OUTPUT
	
	
	

	
	
	
	
	

	Regression Statistics
	
	
	

	Multiple R
	0.988514
	
	
	

	R Square
	0.97716
	
	
	

	Adjusted R Square
	0.976684
	
	
	

	Standard Error
	1834999
	
	
	

	Observations
	50
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	1
	6.91E+15
	6.91E+15
	2053.599

	Residual
	48
	1.62E+14
	3.37E+12
	

	Total
	49
	7.08E+15
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-955422
	331388.8
	-2.88309
	0.005877

	X Variable 1
	55721.72
	1229.608
	45.31666
	4.7E-41


What does this regression output tell us?  The standard error, SE, of the model is 1,834,999.  The standard deviation of the raw data is 12,017,465.  This tells us that using the linear least squares model gives more accurate results than just using the mean as a baseline estimation.  The value of r, the correlation coefficient, is .988514.  This is very close to 1, implying close to perfect correlation between the explanatory variable and the response variable.
The F-statistic is the ratio of the Regression Mean Square to the Residual Mean Square.  This ratio follows an F-distribution.  When the explanatory variables have no relation to the response variable, the ratio of the Regression mean square to the Residual mean square is close to one.  For our model, the F statistic is 2054.  A random variable that folllows an F distribution with 1 degree of freedom in the numerator and 48 degrees of freedom in the denominator, has virtually zero probability of exceeding 2054.  Thus we reject the null hypothesis that the slope of the regression is 0 with virtual certainty.
The intercept, α has a P-value of .005877.  So we can reject the null hypothesis that the intercept is zero with more than 99% confidence.  Similarly, the slope, β, has a P-value of 4.7x10-41, and we reject the null hypothesis that the slope is zero with virtual certainty, as we did with the F-test.
Next, I ran a regression of farm acreage per square mile of area on GDP density.  This is the same response variable as was used in my first analysis.
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	SUMMARY OUTPUT
	
	
	

	
	
	
	
	

	Regression Statistics
	
	
	

	Multiple R
	0.375711
	
	
	

	R Square
	0.141158
	
	
	

	Adjusted R Square
	0.123266
	
	
	

	Standard Error
	11252443
	
	
	

	Observations
	50
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	1
	9.99E+14
	9.99E+14
	7.889235

	Residual
	48
	6.08E+15
	1.27E+14
	

	Total
	49
	7.08E+15
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	15128385
	2880629
	5.251764
	3.4E-06

	X Variable 1
	-27795.3
	9895.883
	-2.80878
	0.007172


The standard error, SE, of the model is 11,252,443.  The standard deviation of the raw data is 12,017,465.  This tells us that using the linear least squares model doesn’t give a whole lot more accuracy than just using the mean as an estimate of the value.  The value of r, the correlation coefficient, is .375711.  A value of zero would imply no correlation, and a value of 1 would imply perfect correlation.  Our correlation coefficient implies weak correlation.

For this model, the F statistic is 7.89.  A random variable that folllows an F distribution with 1 degree of freedom in the numerator and 48 degrees of freedom in the denominator, has .7% chance of exceeding 7.89.  Thus we reject the null hypothesis that the slope of the regression is 0 at a 99% confidence level, but not at a 99.5% confidence level.

The intercept, α has a P-value of 3.4x10-6.  So we can reject the null hypothesis that the intercept is zero with more than 99.99% confidence.  Similarly, the slope, β, has a P-value of .007, and we reject the null hypothesis that the slope is zero at a 99% confidence interval, but not at a 99.5% confidence interval.

Despite the strong evidence that the slope and intercept are not zero, this doesn’t appear to be a particularly strong model, as is evidenced by the correlation coefficient and standard error of the model.  And looking at the graph of the data tends to give that impression as well.  That’s an important point I learned in this course – effective statistical analyses use a level of judgement in addition to hard numbers.
Two-Variable Analysis #2
My second set of two-variable analyses used per capita GDP as the response variable.  The first of this is a regression of population density on per capita GDP.  As above, I used Excel’s regression analysis add-in to obtain my results.  The least squares regression of population density on per capita GDP yields the following model:

Ŷ = 43367.11 + 15.35515X

Where X is the explanatory/independent variable and Ŷ is the predicted value of per capita GDP.  The following graph shows the least squares regression line plotted against the data:
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Visually, the fit isn’t as convincing as the regression of population density on GDP density.  We can use the results of the Excel regression output to investigate further.
	SUMMARY OUTPUT
	
	
	

	
	
	
	
	

	Regression Statistics
	
	
	

	Multiple R
	0.371372
	
	
	

	R Square
	0.137917
	
	
	

	Adjusted R Square
	0.119957
	
	
	

	Standard Error
	8269.284
	
	
	

	Observations
	50
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	1
	5.25E+08
	5.25E+08
	7.679111

	Residual
	48
	3.28E+09
	68381050
	

	Total
	49
	3.81E+09
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	43367.11
	1493.378
	29.0396
	4.17E-32

	X Variable 1
	15.35515
	5.541133
	2.771121
	0.007924


What does this regression output tell us?  The standard error, SE, of the model is 8,269.  The standard deviation of the raw data is 8,815.  This tells us that using the linear least squares model gives slightly more accurate results than just using the mean as a baseline estimation.  The value of r, the correlation coefficient, is .371372.  A value of zero would imply no correlation, and a value of 1 would imply perfect correlation.  Our correlation coefficient of .371372 implies weak correlation.

For our model, the F statistic is 7.68.  A random variable that folllows an F distribution with 1 degree of freedom in the numerator and 48 degrees of freedom in the denominator, has .8% chance of exceeding 7.68.  Thus we reject the null hypothesis that the slope of the regression is 0 at a 99% confidence level, but not at a 99.5% confidence level.

The intercept, α has a P-value of 4.17x10-32.  So we can reject the null hypothesis that the intercept is zero with near certainty.  Similarly, the slope, β, has a P-value of .007924, and we reject the null hypothesis that the slope is zero at a 99% confidence interval, but not at a 99.5% confidence interval.
The second analysis in this set regresses the number of acres of farmland per square mile of area on per capita GDP.  A graph of the regression line against the actual data is below.
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The Excel regression output is below:
	SUMMARY OUTPUT
	
	
	

	
	
	
	
	

	Regression Statistics
	
	
	

	Multiple R
	0.115442
	
	
	

	R Square
	0.013327
	
	
	

	Adjusted R Square
	-0.00723
	
	
	

	Standard Error
	8846.675
	
	
	

	Observations
	50
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	1
	50740358
	50740358
	0.648326

	Residual
	48
	3.76E+09
	78263661
	

	Total
	49
	3.81E+09
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	47460.8
	2264.752
	20.95629
	8.44E-26

	X Variable 1
	-6.26447
	7.780147
	-0.80519
	0.424683


This appears to be the weakest of the four models reviewed.  The correlation coefficient is .115, indicating very little correlation between the explanatory and response variables.  The model has a standard error of 8847, whereas the standard deviation of the raw data is 8815.  So you’re not much better off using this model than you would be just using the mean as a predictive value.
The F-stat is below one, so we fail to reject the null hypothesis that the regression slope is zero.  Similarly, the P-value of the slope coefficient is .4247, reinforcing our failure to reject the null hypothesis that the regression slope is zero.  The P-value of the intercept is close to zero, so we reject the null hypothesis that the intercept is zero, but that isn’t necessarily surprising information.  None of the results of this regression are too surprising.  If I was to ask the question “can you predict a state’s per capita GDP based on how much of it’s land is used for farming?” I would get funny looks.  They are, superficially at least, unrelated.

Conclusion

This was a fun and interesting project.  The farmland data ended up being not-too-useful in predicting GDP, at least compared to population data.  The results – that population is a stronger predictor than farmland for GDP - aren’t too surprising.  Farms are a contributor to GDP, but many other industries contribute to GDP.  But people are the common denominator in GDP – no people, no production. This analysis does have weaknesses, but I didn’t intend for it to be a strong analysis, but rather a helpful exercise in learning regression analysis and statistical methods.  The data only covers one year of experience and expanding the data over multiple years would give increased credibility to the results.
