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Introduction 

Every year living in California we hear about wildfires throughout our state. Particularly during 

dry winter seasons like we had this year, wildfires are all but inevitable. For my time series 

analysis project, I decided to look at historical data specific to California Timberland fires. My 

project will analyze this annual data, determine whether or not it is stationary, transform it if 

necessary to make it stationary, assess seasonality, choose an appropriate model that fits the 

data, analyze its residuals, and finally predict future values. 

Data 

Number of acres burned in Timberland fires in California, 1932-2008 

http://cdfdata.fire.ca.gov/incidents/incidents_statsevents 

Model Specification 

The time series is graphed below. The data is annual, so you don’t see seasonality. There are 

maybe one or two outliers, with particularly high years in 1936 and 1977. It doesn’t look like 

there is any general upward or downward trend. 
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The autocorrelation function for this original series is graphed below 
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  𝑤𝑖𝑡ℎ 𝑛 = 77 

Since this looks like a stationary series, we could use the original data to fit a model to. 

However, I will look at a transformed set as well. Taking logarithms and then first differences, 

the transformed series’ ACF below I like better than the original series, because of the negative 

autocorrelation at lag 1.  

 

I will fit a model to both the original series, and the first differences of the logarithms. I will refer 

to the original series at 𝑌𝑡  and the transformed series as 𝑊𝑡 = ln 𝑌𝑡 −  ln(𝑌𝑡−1)  

Model Fitting 
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To fit both series to the 𝐴𝑅 1  model, I used the regression tool in excel to estimate the 

parameters. For the original series 𝑌𝑡  

𝐴𝑅 1 : 𝑌𝑡 =  𝜑(𝑌𝑡−1) + 𝑒𝑡 + 𝜃0   

𝑌𝑡 =  −0.66(𝑌𝑡−1) + 𝑒𝑡 + 17,296 

This is not a good model, as the parameter is close to zero.  

Fitting the transformed 𝑊𝑡  series to the 𝐴𝑅 1  model: 

𝐴𝑅 1 ∶  𝑊𝑡 = 𝜑𝑊𝑡−1 + 𝑒𝑡 + 𝜃0 

Regression Statistics 
     Multiple R 0.530973 
     R Square 0.281933 
     Adjusted R 

Square 0.272096 
     Standard Error 1.566112 
     Observations 75 
     

       ANOVA 
      

  df SS MS F 
Significanc

e F 
 Regression 1 70.29895829 70.29895829 28.6618 9.55E-07 
 Residual 73 179.0475315 2.452705912 

   Total 74 249.3464898       
 

       

  
Coefficient

s Standard Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 0.000254 0.180866585 0.001403934 
0.99888

4 -0.36021 
0.36072

1 

X Variable 1 -0.54036 0.100932184 -5.353671332 9.55E-07 -0.74152 -0.3392 

 

𝑊𝑡 = −0.54𝑊𝑡−1 + 𝑒𝑡 + 0.00025 

A graph of the forecasted values against the actual values is below. 



 

The forecasted values are in red. This model tends to be somewhat reactive, and doesn’t 

handle the peaks of the actual series well. 

To consider another model, I am fitting the transformed 𝑊𝑡  series to the 𝑀𝐴 1  model 

𝑀𝐴 1 : 𝑊𝑡 = 𝑒𝑡 − 𝜃𝑒𝑡 + 𝜇 

Using the least squares estimate, by using Solver in Excel, I get the resulting process: 

𝑊𝑡 = 𝑒𝑡 − 0.8712𝑒𝑡 + 0.0085 

A graph of the forecasted values against the actual values is below. Again forecasted values are 

in red. 

 

This process tends to overestimate the peaks, particularly in the later years.  
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Residual Analysis 

For the 𝐴𝑅 1  model: 𝑊𝑡 = −0.54𝑊𝑡−1 + 𝑒𝑡 + 0.00025, below is a histogram for the residuals. It 

looks like they are distributed somewhat normally, with a bit of a left skew. The ACF is within the 

CI, except for one value. 
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The Q-Q plot looks like the residuals are distributed normally.  

 

For the 𝑀𝐴(1) model: 𝑊𝑡 = 𝑒𝑡 − 0.8712𝑒𝑡 + 0.0085, below is a histogram for the residuals. It 

looks like they are distributed somewhat normally. The ACF is within the CI, except for one 

value. 
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The Q-Q plot looks like the residuals are distributed normally. 

Conclusion  

This analysis shows that the Fire data can be modeled using an ARIMA process. The first 

differences of logarithms would be a better series for modeling. Using the transformed series, 

the 𝐴𝑅(1) and 𝑀𝐴 1  models both have reasonably normal residuals, making them good 

candidates for forecasting future values. 
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