TS Module 6 Stationary autoregressive processes

(The attached PDF file has better formatting.)

Time series autoregressive processes practice problems

** Exercise 6.1: Stationarity of AR(2) process

- A. What are the three conditions for an AR(2) process to be stationary?
- B. Given φ_1 , what values of φ_2 create a stationary AR(2) process?

Part A: The three conditions are

1. $\phi_1 + \phi_2 < 1$ 2. $\phi_2 - \phi_1 < 1$ 3. $|\phi_2| < 1$

(See Cryer and Chan page 72, equation 4.3.11)

Part B: If ϕ_1 is given, the conditions are

- 1. $\varphi_2 < 1 \varphi_1$
- 2. $\phi_2 < 1 + \phi_1$
- 3. $|\phi_2| < 1$

Illustration: If $\phi_1 = 0.9$, then ϕ_2 must be less than 0.1 and more than -1.

*Question 6.2: Characteristic polynomial

An AR(2) process is $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$.

What is the characteristic polynomial for this time series?

A. $\phi(x) = 1 + \phi_1(x) + \phi_2(x^2)$ B. $\phi(x) = 1 + \phi_2(x) + \phi_1(x^2)$ C. $\phi(x) = 1 - \phi_1(x) - \phi_2(x^2)$ D. $\phi(x) = 1 - \phi_2(x) + \phi_1(x^2)$ E. $\phi(x) = 1 + \phi_2(x) - \phi_1(x^2)$

Answer 6.2: C

(See Cryer and Chan page 71, equation 4.3.9)

The characteristic polynomial reverses the sign of the autoregressive coefficient.

** Exercise 6.3: AR(2) autocorrelations

An AR(2) process with mean zero is $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$

- A. What is γ_0 , the variance of Y_t ?
- B. What is γ_1 , the covariance of Y_t and Y_{t-1} ?
- C. What is γ_2 , the covariance of Y_t and Y_{t-2} ?
- D. What is ρ_{1} , the autocorrelation of lag 1?
- E. What is ρ_2 , the autocorrelation of lag 2?

Part A: Multiply the expression for the AR(2) process by Y_{t-1} and take expectations to get

$$\mathsf{E}(\mathsf{Y}_{\mathsf{t}} \times \mathsf{Y}_{\mathsf{t}-1}) = \phi_1 \, \mathsf{E}(\mathsf{Y}_{\mathsf{t}-1} \times \mathsf{Y}_{\mathsf{t}-1}) + \phi_2 \, \mathsf{E}(\mathsf{Y}_{\mathsf{t}-2} \times \mathsf{Y}_{\mathsf{t}-1}) + \mathsf{E}(\epsilon_{\mathsf{t}} \times \mathsf{Y}_{\mathsf{t}-1})$$

The time series observations are uncorrelated with the error terms in subsequent periods, so $E(\epsilon_{t}, Y_{t-1}) = 0$.

$$E(Y_{t}, Y_{t-1}) = \gamma_{1}, E(Y_{t-1}, Y_{t-1}) = \gamma_{0}, \text{ and } E(Y_{t-2}, Y_{t-1}) = \gamma_{1}, \text{ so}$$

$$\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_1$$

Divide this equation by γ_0 to get

$$\rho_1 = \phi_1 \rho_0 + \phi_2 \rho_1$$

 $\rho_{o}\,\text{is}$ the correlation of a random variable with itself, which is always 1, so we derive that

$$\rho_0 = \theta_1 + \theta_2 \rho_1 \Rightarrow \rho_1 = \theta_1 / (1 - \theta_2)$$

Part B: Multiply the expression for the AR(2) process by Y_{t-2} and take expectations to get

$$\mathsf{E}(\mathsf{Y}_{\mathsf{t}} \times \mathsf{Y}_{\mathsf{t}\text{-}2}) = \phi_1 \, \mathsf{E}(\mathsf{Y}_{\mathsf{t}\text{-}1} \times \mathsf{Y}_{\mathsf{t}\text{-}2}) + \phi_2 \, \mathsf{E}(\mathsf{Y}_{\mathsf{t}\text{-}2} \times \mathsf{Y}_{\mathsf{t}\text{-}2}) + \mathsf{E}(\epsilon_{\mathsf{t}} \times \mathsf{Y}_{\mathsf{t}\text{-}2}) \Rightarrow$$

The time series observations are uncorrelated with the error terms in subsequent periods, so $E(\epsilon_{t}, Y_{t-2}) = 0$.

 $E(Y_{t}, Y_{t-2}) = \gamma_{2}$, $E(Y_{t-1}, Y_{t-2}) = \gamma_{1}$, and $E(Y_{t-2}, Y_{t-2}) = \gamma_{0}$, so

$$\gamma_2 = \phi_1 \gamma_1 + \phi_2 \gamma_0$$

Divide by γ_0 to get

$$\rho_2 = \phi_1 \rho_1 + \phi_2 \rho_0 = \phi_2 + \phi_1^2 / (1 - \phi_2)$$

Cryer and Chan write this as

$$\rho_2 = \left[\phi_2 \left(1 - \phi_2 \right) + \phi_1^2 \right] / \left(1 - \phi_2 \right)$$