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The sections included in this project are

• introduction,
• Lee-Carter model,
• data,
• model selection,
• forecasting, and
• conclusion

1. Introduction

Lee-Carter model introduced by Lee and Carter (1992) has long been a
popular long-term mortality projection model since debut. The Lee-Carter
model is a a two-factor model, extracting two age-specific elements for every
age and a time-varying effect for every fitted time from the central death
rates. In the projection phrase, the model keeps the age-specific element of
each age and projects the future time-varying index by a time series model.
This project will concentrate on the model selection and forecasting for the
time-varying index.

2. Lee-Carter model

A brief introduction of actuarial concept is given before the introduction
of the Lee-Carter model. The central death rate at age x in year t, mx,t,
is defined as Dx,t, the number of deaths aged x last birthday at the date
of death during year t divided by Ex,t, the average population aged x last
birthday during year t. Commonly, there are two approximations to the
central death rate mx,t with the mortality rate of an individual aged x at
time t, qx,t. The first approach, qx,t = 1 − exp(−mx,t), is based on the
assumption of constant force of mortality within each integer age. The sec-
ond approach, qx,t = mx,t/(1 + 0.5mx,t), is under the assumption of uniform
distribution of deaths (UDD) within each integer age. In this project, the
former approximation is adopted for the data transformation between mx,t

and qx,t.

The Lee-Carter model is given by

ln(mx,t) = ax + bxkt + εx,t,

where
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• both ax and bx are age-specific constants,
• kt is the time-varying index,
• εx,t is the error term and is assumed to follow a normal distribution

with mean zero and to be independent of age x and time t, and
• the mortality data from time tL to tU and from age xL to xU for age

are used for fitting.

As Lee and Carter (1992) explained, under their model eax can depict the
general shape of the central death rate for age x across the projection period,
while bx can reveal the relative changes in response to t since d ln(mx,t)/dt =
bxdkt/dt. The parameter estimation for the Lee-Carter model is not unique,
and is subject to two constraints,

∑
t kt = 0 and

∑
x bx = 1. The first

constraint is a natural constraint, which leads ax to be the average of ln(mx,t)
over time t. That is,

âx =
1

tU − tL + 1

tU∑
t=tL

ln(mx,t).

The original paper suggested using the singular value decomposition (SVD)
method to find {bx} and {kt} which minimize the sum of least squared errors.
Alternatively, the second constraint gives the estimation of kt by

k̂t =

xU∑
x=xL

[ln(mx,t)− âx]

for each year t, and b̂x can be obtained by regressing [ln(mx,t) − âx] on k̂t
without the constant term being involved for each age x.

The forecasted central death rate at age x and year T , denoted as m̂x,K ,
is exp(ax + bxkT ), T > tU . Hence, the forecasted mortality rate at age x
and year T , denoted by q̂x,K , is

exp(−exp(âx + b̂xk̂T )).

Lee and Carter (1992) gave an approach to constructing the confidence
interval for ln(mx,T ) for age x and year T . The standard deviation of the
logarithm of the projected central death rate at age x and year T (T > tU ),
denoted by s.d.(ln(m̂x,T )), is

b̂x

√
Var(k̂T ),

where Var(k̂T ) is the variance of the projected kt at time T .

3. Data

The mortality data used in this project is from Human Mortality Database
(2013). The mortality data is collected from Japanese males from year 1950
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to 2009. The age range applied in this project is from 25 to 84, a 60-age
span.

4. Model selection

This section focuses on the model diagnostic for the time-vary element
kt through various plots like the sample autocorrelation and sample partial
autocorrelation. The sample autocorrelation at lag k, denoted as rk, is
defined as

rk =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=1(Yt − Ȳ )2
.

The partial autocorrelation at lag k, denoted as φkk, is defined as

φkk = Corr(Yt, Yt−k|Yt−1, Yt−2, . . . , Yt−k+1).

Figure 1, 2 and 3 give the picture of the time varying element kt on the
aspect of trend, sample autocorrelation, sample partial autocorrelation. As
we can conclude from these three plots, kt is not a stationary time series with
high autocorrelation in the first few lags. As a result, the first difference of
kt is then examined.

Figure 4, 5 and 6 serve the purpose of the diagnostic of the first difference
of kt. As you can see from in 4, the first difference of kt is relatively much
more stationary than the original time series. The sample autocorrelation
and partial autocorrelation in Figure 4 and 6, respectively, also support that
the first difference of kt has low autocorrelation between different lags.

5. Model fitting

Four ARIMA model are selected to fit the time varying element kt, con-
sidering the non-stationarity of kt and stationarity of the first difference of
kt. They are are

• ARIMA(1,1,0),
• ARIMA(2,1,0),
• ARIMA(0,1,1) and
• ARIMA(1,1,1).

The output from R for all four model is presented in the Appendix. To
review the goodness of fitting, the statistics of least square errors and AICs
(see in Table 1) of the four models indicate that the ARIMA(2,1,0) has the
best fitting result, however the difference in these two statistics are minor.
In addition, the theoretical autocorrelation of the four models is compared
with the sample correlation also suggest that ARIMA(2,1,0) has similar
autocorrelation pattern as the sample autocorrelation. ARIMA(2,1,0) model
has the property that the autocorrelation starts an exponential decay from
the third lag.
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Figure 1. The time series of kt for year 1950 to year 2009

Table 1. Least square errors and AICs for ARIMA(1,1,0),
ARIMA(2,1,0), ARIMA(0,1,1) and ARIMA(1,1,1)

Item ARIMA(1,1,0) ARIMA(2,1,0) ARIMA(0,1,1) ARIMA(1,1,1)
LSE 2.522 2.387 2.521 2.515
AIC 228.01 226.91 227.99 229.86

Table 2. Theoretical autocorrelation V.S. sample correlation

Lag ARIMA(1,1,0) ARIMA(2,1,0) ARIMA(0,1,1) ARIMA(1,1,1) Sample correlation
1 -0.0164 -0.0489 0.0292 0.5357 -0.0140
2 0.0003 -0.2595 0.0000 -0.0156 -0.1920
3 0.0000 0.0288 0.0000 0.0005 0.2480
4 0.0000 0.0663 0.0000 0.0000 0.0980
5 0.0000 -0.0117 0.0000 0.0000 -0.0320
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Figure 2. The autocorrelation of the time series of kt for
year 1950 to year 2009
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6. Forecasting

The forecasting difference between these four time series model are minor
in the forecast phase as we can see from Figure 7, even if we enlarge the
forecast portion in the right side of Figure 7.

Based on the discussion in the previous section, only ARIMA(2,1,0) model
is selected to forecast the mortality rate in this section. With 8 and 9 for the
forecast and confidence interval for kt and mortality rates, respectively. The
acceleration of decreasing speed in kt is different for certain period (i.e. the
kts before 1985 dropping faster than those after). However, the forecasted
time-varying element inherited the characteristics of both the pre-1985 and
post-1985 mortality data, making the time-varying element change more
steep than the most recent trend. In addition, this time-varying element is
universal for all ages in study, but the experience of mortality improvement
in each age is different. The mortality improvement is more significant in
order ages, and Figure 9 also support that projected mortality rates under
the Lee-Carter model are more consistent with the historic mortality rates
in older ages than younger ones.
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Figure 3. The partial autocorrelation of the time series of
kt for year 1950 to year 2009

0 10 20 30 40 50

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

P
ar

tia
l A

C
F

Series  kt$kt

7. Conclusion

There have been some research accomplishment regarding the changing
of the constant term in the time-varying element, and thus the problem
mentioned above that the kts before 1985 dropping faster than those after
can be solved.

The Lee-Carter model may not a good choice to predict the mortality
rates with a large scope of ages since the time-varying element is universal
for all ages.

8. Appendix

8.1. ARIMA(1,1,0).

Call:

arima(x = diff(kt$kt), order = c(1, 0, 0))

Coefficients:

ar1 intercept
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Figure 4. The first difference of the time series of kt for
year 1950 to year 2009

-0.0164 -1.4432

s.e. 0.1407 0.2037

sigma^2 estimated as 2.522: log likelihood = -111, aic = 228.01

∇kt + 1.4432 = −0.0164(∇kt−1 + 1.4432) + et

8.2. ARIMA(2,1,0).

Call:

arima(x = diff(kt$kt), order = c(2, 0, 0))

Coefficients:

ar1 ar2 intercept

-0.0617 -0.2625 -1.4143

s.e. 0.1398 0.1468 0.1537

sigma^2 estimated as 2.387: log likelihood = -109.46, aic = 226.91

∇kt + 1.4143 = −0.0617(∇kt−1 + 1.4143)− 0.2625(∇kt−2 + 1.4143) + et

8.3. ARIMA(0,1,1).

Call:

arima(x = diff(kt$kt), order = c(0, 0, 1))
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Figure 5. The autocorrelation of the first difference of the
time series of kt for year 1950 to year 2009
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Coefficients:

ma1 intercept

-0.0292 -1.4422

s.e. 0.1854 0.2013

sigma^2 estimated as 2.521: log likelihood = -111, aic = 227.99

∇kt + 1.4422 = et + 0.0292et−1

8.4. ARIMA(1,0,1).

Call:

arima(x = diff(kt$kt), order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.2646 -0.3223 -1.4372
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Figure 6. The partial autocorrelation of the first difference
of the time series of kt for year 1950 to year 2009

0 10 20 30 40 50

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Lag

P
ar

tia
l A

C
F

Series  diff(kt$kt)

s.e. 0.6499 0.6320 0.1916

sigma^2 estimated as 2.515: log likelihood = -110.93, aic = 229.86

∇kt + 1.4372 = 0.2646(∇kt−1 + 1.4372) + et + 0.3223et−1
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Figure 7. The forecast of the time-varying element kt
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Figure 8. The forecast and 90% confidence interval of the
time-varying element kt
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Figure 9. The forecast and 90% confidence interval of the
mortality with selected ages
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