Peter Faber
Time Series Student Project

Goal

The goal of this analysis is to match total annual sunspot activity (measured by area of sunspots in
millionths of a hemisphere) to the correct ARIMA model to predict future sunspot activity. Daily sunspot
rates from 1900 to 2012 will be utilized to construct a model to predict 2000-2013 activity. Actual 2000-
2013 sunspot activity will be used to validate the model.

Data

Data was obtained from the Royal Greenwich Observatory (RGO) and is maintained through the
National Aeronautics and Space Administration’s Solar Physics at the Marshal Space Flight Center’s
website: http://solarscience.msfc.nasa.gov/greenwch.shtml. The data set used can be found by visiting
the following site directly: http://solarscience.msfc.nasa.gov/greenwch/daily area.txt. While funding
for this database has been revoked, the database is still maintained. Data as of October 1, 2013 will be
considered®. Throughout this analysis, sunspot activity will be measured in millionths of a hemisphere.

Figure 1 displays daily sunspot activity from 1900-2012. There is a clear seasonal cycle during this
period.

Figure 1: Time Series Plot of Total Annual Sunspot Area
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The data used in my analysis is contained in the attached excel spreadsheet titled “Raw Sunspot Data.xIsx”. Please note that this spreadsheet
contains annual data even though the source material contained daily data. That daily data was very large and impractical to include due to file
size considerations. The annual values were calculated by taking the average of the daily values.
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Stationarity Test

In order to apply an ARIMA model, the data in question must be stationary. Sunspots are areas on the
sun that experience such strong magnetic activity that the temperature of the gas in that area drops and
appears dark to the observers. Even though the rational is not yet entirely understood, sunspots are
known to by cyclical. The general shape of the time series suggests that the data in question has cyclical
highs and lows and is therefore not stationary. To quantify the seasonality of the data, we consider the
autocorrelation plot of the time series plot of daily sunspot activity in Figure 2.

Autocorrelation

Figure 2: Autocorrelation Function for Total Sunspot Area
(with 5% significance limits for the autocorrelations)
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Since the autocorrelation function does not decline quickly and remain near zero, we see that the time
series is not stationary. Figure 2 suggests that peaks occur around Lag 1, 11, 22, 33, 44 and again about
every 11 years. This implies a period of seasonality of about 11 years.
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Seasonal Adjustment
In order to predict future sunspot activity, we must adjust our model and remove the seasonality. By

transforming the time series by taking the first order differences between the periods, we see Figure 3
below.

Figure 3: Time Series Plot of Transformed Data
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We consider the autocorrelation of the transformed data in Figure 4.

Figure 4: Autocorrelation Function for Transformed Data
{with 5% significance limits for the autocorrelations)
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The transformed time series shown in Figures 3 and 4 is clearly stationary. The autocorrelation quickly

goes to 0 and remains there as the time series goes on.

Model Estimation

Since the transformed model is stationary, we can now develop a model with may contain

autoregressive and/or moving average components.

Since the autocorrelation function increases and decreases in a sinusoidal manner as lag increases, we
know that the time series cannot be described via a first order autoregressive model. The model would
decrease in one direction if it was first order autoregressive. The model must be at least second order

or contain moving average components.

Using Minitab (see attached file), we consider increasing order autoregressive and moving average

models until an acceptable model is found.

AR(2)

Final Estimates of Parameters
Type Coef SE Coef T
AR 1 0.6047 0.1077 5.62
AR 2 -0.0398 0.1080 -0.37

Modified Box-Pierce (Ljung-Box)

Lag 12 24 36
Chi-Square 29.8 39.0 56.8
DF 10 22 34
P-Value 0.001 0.014 0.008

The p-value for the second order term suggests that this term is not statistically significant.” This model
should be rejected and we include a moving average term to see if first order white noise provides more

P
0.000
0.713

Chi-Square statistic

48
65.0
46
0.034

accurate coefficients for the ARMA model.

ARMA(2,1)

Final Estimates of Parameters

Type Coef SE Coef T
AR 1 0.0016 2.8475 0.00
AR 2 0.3522 1.6235 0.22
MA 1 -0.5669 2.8777 -0.20

Modified Box-Pierce (Ljung-Box)

Lag 12 24 36
Chi-Square 32.5 42.0 59.4
DF 9 21 33
P-Value 0.000 0.004 0.003

P
1.000
0.829
0.844

Chi-Square statistic

48
67.3
45
0.017

? Note: All statistical tests are performed at a 5% significance level.
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The p-values for all three coefficients suggest

that none of the terms are statistically significant. The

model should not be considered. Since the autoregressive graph of the transformed time series does
not cross zero until lag 3, it is likely that the ARMA function be of at least order 3.

AR(3)

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.5954 0.1059 5.62 0.000
AR 2 0.0913 0.1245 0.73 0.466
AR 3 -0.2141 0.1063 -2.01 0.047

Modified Box-Pierce (Ljung-Box) Chi-Squ

Lag 12 24 36 48
Chi-Square 25.6 31.6 49.7 60.3
DF 9 21 33 45
P-Value 0.002 0.064 0.031 0.063

are statistic

The p-values for the coefficients of the first and third order autoregressive term suggest that they are
statistically significant. However, since the p-value for the second order term is greater than 0.05, we

next consider an ARMA model which includes
term.

ARMA(3,1)

Final Estimates of Parameters

Type Coef SE Coef T

AR 1 -0.3725 0.1089 -3.42 0.00
AR 2 0.5470 0.0985 5.56 0.00
AR 3 -0.0678 0.1107 -0.61 0.54
MA 1 -0.9716 0.0088 -110.07 0.00

Modified Box-Pierce (Ljung-Box) Chi-Squ

Lag 12 24 36 48
Chi-Square 30.1 38.8 58.0 66.8
DF 8 20 32 44
P-Value 0.000 0.007 0.003 0.015

three autoregressive terms as well as a moving average

P
1
0
2
0

are statistic

We see that all but one of the moving average and first and second autoregressive terms are statistically
significant. We consider a second order moving average term.

ARMA(3,2)

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 1.7955 0.1295 13.86 0.000
AR 2 -1.5374 0.1843 -8.34 0.000
AR 3 0.3915 0.1203 3.25 0.002
MA 1 1.2614 0.0607 20.78 0.000
MA 2 -0.9451 0.0437 -21.62 0.000

Modified Box-Pierce (Ljung-Box) Chi-Square statistic
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Lag 12 24 36 48
Chi-Square 17.5 24.8 40.0 48.4
DF 7 19 31 43
P-Value 0.015 0.166 0.130 0.263

We see that all five coefficients have p-values below 0.05 and are therefore statistically significant.

Since all coefficients are statistically significant, this is a good model to consider for further validation
tests.

We want to confirm that the residuals present in this model are random and not a function of the
model.

First, since the p-values under the modified Box-Pierce Chi-Square test under 24, 36 and 48 lags is larger
than 0.05, the residuals are similar to the residuals from a random selection of data and are therefore
random.

Next, we consider whether or not the residuals are normally distributed by plotting them next to the
normal distribution.

Figure 5: Normal Probability Plot
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Figure 5 shows that the residuals very closely follow the normal distribution.

Since the model has low p-values for its coefficients, passes the Modified Box-Pierce Chi Square Statistic
Test, and has residuals which are very close to the normal distribution, we accept the model. Its
coefficients are statistically significant; its residuals are random and normally distributed.
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Model Evaluation and Conclusion

We now predict total annual sunspot activity for 2000-2012 using the model.

Figure 6: Actual vs ARMA(3,2)
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The source data for Figure 6 was obtained from Minitab and the graph was created using the attached
Excel file.

The graph suggests that our model more accurately predicts the general trend of sunspot activity rather
than the actual number of sunspots which will occur in a given year. Sunspot activity is predicted to
drop similarly to actual events but specific year measurements are off by several hundred millionths of a
hemisphere.

Sunspot activity, while complicated, is based on magnetic fields present in the Sun. While much of the
thermodynamics describing the Sun’s physics are known, there are any other aspects which are not.
The time series developed here provides one method of prediciting sunspot activity but it may not be
the best. Perhaps a more accurate prediction tool would come from using our understanding of the
Sun’s thermodynamics to model solar particles using the always increasing computer power present
today.



