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1 Executive Summary

This project investigates the effects of unstable parameters on multi-variate linear

regressions, in the context of loss reserving. It is found in this project that failing to

capture the changed parameter results in a low regression goodness of fit. The residuals

also show patterns, which violates the basic assumptions in linear regressions. A

dummy variable is then included to capture the discrete change (jump) in the inflation

rate. Results show significant improvement in the goodness of fit and results no longer

show undesirable patterns.

2 Introduction

Triangle loss reserving technique is widely used by actuaries in general insurance prac-

tice. The underlying rationale behind the technique is that loss claims are affected by

the development pattern of claiming processes and the inflation rate. The two factors

are respectively captured by the development year and calendar year. Their effects

are usually assumed to be multiplicative: the development pattern is assumed to be

an exponential decay, and the effect of inflation is obviously multiplicative.

The accident year that represents the time when loss occurs is also an important

factor in determining loss claims. For example, as the insurance company grows in

business, the exposure is getting larger. This results in a higher loss amount as the

compare grows. In addition, it is possible that the accident rate changes over time due

to possible catastrophes or some social effects. But include the accident year, as well

as the development and calendar years, results in perfect multi-collinearity problem,

because the calendar year equals the sum of the accident year and the development

period. Multi-collinearity does not bias the estimation but makes the estimated pa-

rameters inaccurate.

With this regard, two additional assumptions are made: (1) the risk exposure of

the company is constant across the analysis window for 15 years; (2) the underlying
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accident occurring rate does not change in the 15 years’ examining window. The devel-

opment pattern is held constant as discussed earlier, but the inflation rate can change

over time. For simplicity, a jump of inflation rate in year 10 is assumed in simulating

a second panel of loss claims data. The original regression is again performed to show

the effects of unstable inflation rate. A dummy variable is then included in account

for the impact of the jump in the inflation rate.

The rest of the project is arranged as follows. The next section describes how the

data are simulated and the major model framework. Section 4 assesses the impact of

stochasticity on regression results. The stochastic term is set to zero in the first step

and then the standard deviation of the error term is changed to 0.5 and 2 for sce-

nario analyses. Section 5 investigates the impact of unstable parameters and provides

remedies - including a dummy variable in the regression. Section 6 concludes.

3 Data Simulation

The data employed in the project are simulated in excel and are shown in the first

sheet of attached excel file. The logarithm of increment loss Y happened in year X1

and ended in development year X2 is determined only by the two factors X1 and X2.

In mathematical formula, the regression equation is:

Y = α + β1X1 + β2X2 + ε, (3.1)

where α is the intercept, β1 is the slope parameter for development year that evaluates

the rate of exponential decay of the development pattern, β2 is the slope parameter

for the calendar year that can be interpreted as the inflation rate, and ε is the normal

disturbance term.

In the simulation of the first data set, the parameters in the regression equation

are pre-specified:

• The horizon of the analysis is 15 years;
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• X1 = 0, 1, · · · , 14, representing the 15 development years;

• X2 = 0, 1, · · · , 14, representing the 15 calendar years;

• α = 12, representing an average value of 12 of loss logarithms;

• β1 = -0.25, suggesting a constantly 25% exponential decaying rate;

• β2 = 0.1 implying a stable inflation rate.

The standard deviation σ of the disturbance term is varied in three scenarios: zero

in Scenario 1 (Deterministic), 0.5 in Scenario 2 (Low stochastic), and 2 in Scenario 3

(High stochastic).

The second data set is simulated for the analysis on the impact of unstable inflation

rate. The only difference from the first data set is that there is a jump in the inflation

rate. This is expressed in the following equation:

Y = α + β1X1 + β2X2 + (β
′

2 − β2) max(X2 − 9, 0) + ε, (3.2)

where β
′
2 is the new inflation rate starting from year 10, and other notations are the

same as in Equation (3.1). β
′
2 is set to be 0.2 in the data simulation.

4 Scenario Analysis of Error Volatility

4.1 Scenario 1: deterministic relation

Suppose the loss is perfectly determined by the development year and the calendar

year, where σ = 0. The regression is performed and results are shown in Table 1. As

expected, the estimated parameters are exactly the input values used in the simulation.

Measures of goodness of fit all suggest that the model fits well to the data, which are

of course what should be expected. Residuals are of course zero: the variations in the

dependent variable are all explained by the linear regression.
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Table 1: Regression results of Scenario 1

Parameter Estimate s.e. (10−14) t-statistic(1015) Lower Upper Width

α 12.0000 0.1212 9.8972 12.0000 12.0000 0.0000
β1 -0.2500 0.0140 -1.7886 -0.2500 -0.2500 0.0000
β2 0.1000 0.0140 0.7155 0.1000 0.1000 0.0000

R2 F p-value σ̂2 N
1.0000 2.1075 × 1030 0.0000 0.0000 120

4.2 Scenario 2: low volatility (σ = 0.5)

A normal random variable with standard deviation of 0.5 is included in the regression

equation as shown in Equation (3.1), where ε ∼ Norm(0, 0.52). The regression is

performed and results are shown in Table 2. It can be seen from the table that

estimated parameters are not equal to the true parameters pre-specified in the data

simulation, but the 95% confidence intervals do include the true parameters.

Table 2: Regression results of Scenario 2

Parameter Estimate s.e. t-statistic Lower Upper Width

α 12.2150 0.1233 99.0935 11.9709 12.4592 0.4883
β1 -0.2554 0.0142 -17.9740 -0.2836 -0.2273 0.0563
β2 0.0807 0.0142 5.6800 0.0526 0.1089 0.0563

R2 F p-value σ̂2 N
0.7427 168.8227 0.0000 0.2403 120

4.3 Scenario 3: high volatility (σ = 2)

A normal random variable with standard deviation of 2 is included in the regression

equation as shown in Equation (3.1), where ε ∼ Norm(0, 4). The regression is per-

formed and results are shown in Table 3. As expected, estimated parameters are not

necessarily equal to the true parameters pre-specified in the data simulation and the

95% confidence intervals do include the true parameters. The interval widths are con-

siderably larger than those of Scenario 2. It can be seen from the table that R2 is

less than 0.2, suggesting that no more than 20% of the variations in the dependent

variable are explained by the regression equation.
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Table 3: Regression results of Scenario 3

Parameter Estimate s.e. t-statistic Lower Upper Width

α 12.8602 0.4931 26.0817 11.8837 13.8367 1.9530
β1 -0.2716 0.0568 -4.7791 -0.3842 -0.1591 0.2251
β2 0.0229 0.0568 0.4021 -0.0897 0.1354 0.2251

R2 F p-value σ̂2 N
0.1937 14.0534 0.0000 3.8447 120

Residuals are separately plotted against the two explanatory variables. The plots

are shown in Figure 1. It can be seen that the residuals do no show certain patterns.
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Figure 1: Residual plot of Scenario 3

5 Unstable Inflation Rate

Discrete changes are assumed to take place in the inflation rate. In the first subsection I

show the impact of unstable inflation rate on the regression for three different scenarios

by using the original regression equation. Then the remedy is shown in the second

subsection to address the unstable inflation rate.

5.1 Impact of unstable inflation rate

Without taking into account the problem, the regression equation expressed in Equa-

tion (3.1) is again fit to the data simulated based on the unstable inflation. The

scenarios of different magnitudes of volatilities are all used in the regression. Results

are shown in Table 4. It can be seen from Table 4 that the variations caused by
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Table 4: Regression results of data with a discrete change in inflation rate

Scenario 1: Deterministic
Parameter Estimate s.e. t-statistic Lower Upper Width

α 11.7551 0.0244 481.9821 11.7068 11.8034 0.0966
β1 -0.2500 0.0028 -88.9193 -0.2556 -0.2444 0.0112
β2 0.1445 0.0028 51.4088 0.1390 0.1501 0.0111
R2 F p-value σ̂2 N

0.9855 3,986 0.0000 0.0094 120

Scenario 2: Low volatility
Parameter Estimate s.e. t-statistic Lower Upper Width

α 11.9308 0.1378 86.5749 11.6578 12.2037 0.5459
β1 -0.2424 0.0159 -15.2585 -0.2739 -0.2109 0.0630
β2 0.1255 0.0159 7.8983 0.0940 0.1569 0.0629
R2 F p-value σ̂2 N

0.6656 116 0.0000 0.3003 120

Scenario 3: High volatility
Parameter Estimate s.e. t-statistic Lower Upper Width

α 12.4576 0.5544 22.4708 11.3597 13.5556 2.1959
β1 -0.2196 0.0639 -3.4362 -0.3462 -0.0930 0.2532
β2 0.0683 0.0639 1.0685 -0.0583 0.1949 0.2532
R2 F p-value σ̂2 N

0.0956 6.1852 0.0028 4.8604 120

the change in inflation rate cannot be explained by the regression and are captured

in the residual part. This also provides the reason for higher estimated variances of

errors (σ̂2) compared to the estimations from the previous section. For example, the

estimated variance for the low volatility scenario is 0.3003, higher than that estimated

variance of 0.2403 from Section 4.2. The estimate variances are also higher than the

true values that are used as input in the data simulation, which also justifies that

failing to capture the change in inflation rate increases the error.

Residual plots for the three scenarios are shown in Figure 2. The discrete change

in the inflation rate from year 9 can be easily identified from the two figures in the top

panel where results are for the deterministic scenario. Residuals show a sharp turning

point at year 9. As the volatility of the error increases, it is more difficult to identify

the change. In addition the pattern of the residuals of Scenario 2 and Scenario 3 are

very similar except that they are of different scales. This is due to the relatively large
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volatility compared to the change in the inflation rate.
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Figure 2: Residual plots of data with a discrete change in the inflation rate from year
9. The top two figures are for Scenario 1, the middle two figures are for Scenario 2,
and the bottom figures are for Scenario 3.

5.2 Remedy

Equation (3.2) shows the underlying generation method of data. To address the prob-

lem, the maximum part needs more care rather than just ignoring it. In fact, the

maximum part is equivalent to the product of a dummy variable and the shifted cal-
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endar year. In mathematical notation, it can be expressed in the following equation:

max(X2 − 9, 0) = D(X2 − 9), (5.1)

where D is a dummy variable that equals 0 if X2 ≤ 9 and equals 1 if X2 > 9. Therefore,

the regression equation can be expressed in Equation (5.2):

Y = α + β1X1 + β2X2 + γD(X2 − 9) + ε, (5.2)

where γ can be interpreted as the difference of the changed inflation rate and the

original inflation rate (i.e. γ = β
′
2 − β2).

Perform regression Equation (5.2) on the second data set, results are shown in

Table 5. From the first panel where the deterministic scenario is analysed, it is obvious

that the additional variable captures the change in the inflation rate. For the other

two scenarios, the improvement in goodness of fit is marginal and sometimes becomes

worse off. This is due to the disturbance of the errors with large volatilities. As the

volatility gets larger, the improvement is smaller. For example, in the low volatility

scenario the estimated incremental inflation rate is somewhat close to the true value,

but the estimated increment is negative in the high volatility scenario.

Residual plots for the three scenarios are again shown in Figure 3. It is obvious

that the residuals of Scenario 1 become zero once we include an interactional term

of dummy variable and the shifted calendar year as the remedy. As analysed above,

the improvement in the residuals is minimal in the two scenarios with considerable

volatility.

6 Conclusion

This project first assesses the impact of the disturbance term on the regression good-

ness of fit by varying the volatility of the error term. Results indicate that the error

sum of squares gets larger and R2 gets smaller as the volatility increases.

9



The impact of unstable parameters on the regression goodness of fit and parameter

estimation accuracy is also investigated in this project. Results indicate that failing

to capture the changes in parameters can result in larger unexplained variations and

residuals with undesirable patterns. The accuracy of the estimation is then question-

able. But as the volatility of the true disturbance term increases, the improvement of

capturing the changes in parameters becomes marginal.

Table 5: Remedy regression results

Scenario 1: Deterministic
Parameter Estimate s.e. (10−14) t-statistic(1016) Lower Upper Width

α 12.0000 0.1066 1.1255 12.0000 12.0000 0.0000
β1 -0.2500 0.0090 -0.2775 -0.2500 -0.2500 0.0000
β2 0.1000 0.0160 0.0626 0.1000 0.1000 0.0000
γ 0.1000 0.0296 0.0338 0.1000 0.1000 0.0000
R2 F p-value σ̂2 N

1.0000 2.15 × 1030 0.0000 0.0000 120

Scenario 2: Low volatility
Parameter Estimate s.e. t-statistic Lower Upper Width

α 11.9627 0.1888 63.3695 11.5888 12.3366 0.7478
β1 -0.2424 0.0160 -15.1972 -0.2740 -0.2108 0.0632
β2 0.1197 0.0283 4.2305 0.0636 0.1757 0.1121
γ 0.0131 0.0524 0.2488 -0.0908 0.1169 0.2077
R2 F p-value σ̂2 N

0.6658 77.0378 0.0000 0.2803 120

Scenario 3: High volatility
Parameter Estimate s.e. t-statistic Lower Upper Width

α 11.8509 0.7551 15.6943 10.3553 13.3465 2.9912
β1 -0.2196 0.0638 -3.4420 -0.3460 -0.0932 0.2528
β2 0.1786 0.1131 1.5790 -0.0454 0.4027 0.4481
γ -0.2478 0.2098 -1.1811 -0.6633 0.1677 0.8310
R2 F p-value σ̂2 N

0.1064 4.6024 0.0044 4.8441 120
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Figure 3: Residual plots of remedy regressions. The top two figures are for Scenario
1, the middle two figures are for Scenario 2, and the bottom figures are for Scenario 3.
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