# Regression Analysis Student Project (Fall 2013)

### Introduction

The objective of this project is to analyze the expenditure for food with respect to two variables using a regression model.

The explanatory variables used for this analysis are: personal income after tax and sex.

# **Data Source**

The data for this analysis was taken from Bureau of Labor Statistics (<u>http://stats.bls.gov/cex/csxcross.htm</u>)

All explanatory and response variable data were taken from 2000 to 2001. And the units of variables are U.S. dollars.

We divided the data into several groups by ages, and they are shown in appendix. In each group, we calculate the average personal income after tax and the average expenditure for food. The number of persons in each group can reach 1000+.

## Chosen response and explanatory variables

Response variable (Y): Expenditure for food Explanatory variable(X<sub>1</sub>): Personal income after tax Explanatory variable (D<sub>1</sub>): Sex Explanatory variable (D<sub>1</sub>\*X<sub>1</sub>): Personal income after tax\*Sex

## **Results and Analysis**

### <u>Model1</u>

The fitted model is:  $Y = \alpha + \beta_1 * X_1$ 

Regression in Excel:

SUMMARY OUTPUT

| Regressi  | ior | n Sta | atistics |
|-----------|-----|-------|----------|
| Multiple  | R   |       | 0.944485 |
| R Square  |     |       | 0.892052 |
| Adjusted  | R   | Squ   | 0.881257 |
| Standard  | Er  | ror   | 208.2664 |
| Observat: | ior | ıs    | 12       |

#### ANOVA

|            | df | SS       | MS       | F        | ignificance F |
|------------|----|----------|----------|----------|---------------|
| Regression | 1  | 3584369  | 3584369  | 82.63697 | 3.78175E-06   |
| Residual   | 10 | 433748.9 | 43374.89 |          |               |
| Total      | 11 | 4018118  |          |          |               |

|              | Coefficient | andard Eri | t Stat   | P-value  | Lower 95%   | Upper 95% |
|--------------|-------------|------------|----------|----------|-------------|-----------|
| Intercept    | 1301.443    | 188.4733   | 6.905185 | 4.17E-05 | 881.4983731 | 1721.388  |
| X Variable 1 | 0.062454    | 0.00687    | 9.090488 | 3.78E-06 | 0.047146044 | 0.077762  |

Fitted Model:

 $Y_i = 1301.44 + 0.06 * X_i$ 

Observations:

- An adjusted R<sup>2</sup> value is 0.88, which means that 88% of the expenditure for food can be explained by the personal income after tax.
- The coefficient of X<sub>1</sub> 0.06 means that if the personal income after tax increases by \$1, the expenditure for food will increase by \$0.06. The relationship between these two variables is positive. We also know that the P-value is 3.78\*E-06, which means that this variable is significant.
- The intercept of 1301.44 means that if the personal income after tax is zero, the expenditure for food will be 1301.44. So we can know that the expenditure for food is a rigid demand, which is reasonable.

We know that the expenditure of food for male and female can be different, and usually man eat more. So we set up another model to test whether male and female has the same expenditure for food under the same personal income after tax.

### Model2

The fitted model is:  $Y = \alpha + \beta_1 * X_1 + \gamma_1 * D_1$ 

Regression in Excel:

SUMMARY OUTPUT

| Regression Stat   | istics   |
|-------------------|----------|
| Multiple R        | 0.963541 |
| R Square          | 0.928411 |
| Adjusted R Square | 0.912502 |
| Standard Error    | 178.7778 |
| Observations      | 12       |

ANOVA

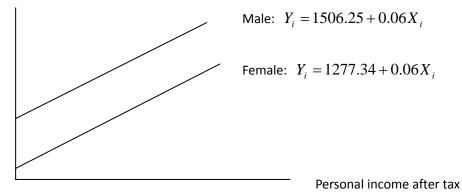
|            | df | SS       | MS      | F        | Significance F |
|------------|----|----------|---------|----------|----------------|
| Regression | 2  | 3730465  | 1865232 | 58.35873 | 7.02766E-06    |
| Residual   | 9  | 287653.5 | 31961.5 |          |                |
| Total      | 11 | 4018118  |         |          |                |

|              | Coefficien#ndard Eri t Stat P        | P-value  | Lower 95%    | Upper 95% |
|--------------|--------------------------------------|----------|--------------|-----------|
| Intercept    | 1506.245 188.0192 8.011124 2.        | .19E-05  | 1080.916047  | 1931.574  |
| X Variable 1 | $0.058979 \ 0.006117 \ 9.641242 \ 4$ | .85E-06  | 0.045140513  | 0.072817  |
| X Variable 2 | -228.905 107.0656 -2.13799 0.        | . 061221 | -471.1040418 | 13.29452  |

Fitted Model:

 $Y_i = 1506.25 + 0.06 * X_i - 228.91 * D_i$ 

| 0 | male   |
|---|--------|
| 1 | female |


Observations:

- The variable X<sub>1</sub> is significant because p-value is almost zero. And the coefficient is 0.06. It means that if the personal income after tax increases by \$1, the expenditure for food will increase by \$0.06. And the result is same as the model 1.
- The variable X<sub>2</sub> is significant, which P-value is 0.06. And the coefficient is -228.91.If we set D<sub>1</sub> equals to 0 (male), the expenditure for food will be \$1506.25. And if we set D<sub>2</sub> equals to 1(female), the expenditure for food will be \$1277.34. The difference is 228.91, which is the difference of expenditure of food between male and female. What's more, the regression can be expressed as below.

Male:  $Y_i = 1506.25 + 0.06 * X_i$ 

Female:  $Y_i = 1277.34 + 0.06 * X_i$ 

Expenditure for food



> In this model, the adjusted  $R^2$  value is 0.91, which is higher the previous model.

In the next model, we will consider another variable, that is interaction dummy variable. The purpose of this model is to test whether X<sub>i</sub> and D<sub>i</sub> interact with each other.

### Model3

The fitted model is:  $Y = \alpha + \beta_1 * X_1 + \gamma_1 * D_1 + \delta_1 * X_1 * D_1$ 

Regression in Excel:

SUMMARY OUTPUT

| Regress  | ion St | atistics |
|----------|--------|----------|
| Multiple | R      | 0.964597 |
| R Square |        | 0.930448 |
| Adjusted | R Squa | 0.904366 |
| Standard | Error  | 186.9049 |
| Observat | ions   | 12       |

#### ANOVA

|            | df | SS         | MS       | F        | gnificance F |
|------------|----|------------|----------|----------|--------------|
| Regression | c, | 3738651    | 1246217  | 35.67406 | 5.6E-05      |
| Residual   | 8  | 8 279467.4 | 34933.43 |          |              |
| Total      | 11 | 4018118    |          |          |              |

|              | Coefficient | undard Eri | t Stat   | P-value  | Lower 95% | Upper 95% |
|--------------|-------------|------------|----------|----------|-----------|-----------|
| Intercept    | 1432.657    | 248.4899   | 5.765455 | 0.000421 | 859.6385  | 2005.676  |
| X Variable 1 | 0.061577    | 0.008349   | 7.375432 | 7.8E-05  | 0.042324  | 0.08083   |
| X Variable 2 | -67.9731    | 350.7863   | -0.19377 | 0.851183 | -876.888  | 740.9417  |
| X Variable 3 | -0.00629    | 0.012988   | -0.48408 | 0.641303 | -0.03624  | 0.023663  |

#### Fitted Model:

 $Y_i = 1432.66 + 0.06 * X_i - 67.97 * D_i - 0.00629 * D_i * X_i$ 

Observations:

- > In this model, the adjusted  $R^2$  value is 0.90, which is slightly lower than Model 2.
- We can see that the interaction dummy is not significant, and the P value is 0.64.
- > We can also find that the  $D_1$  variable is not significant, and the P value is 0.85.

### Summary

|         | Adjusted R <sup>2</sup> | Standard Error | Highest P value |
|---------|-------------------------|----------------|-----------------|
| Model 1 | 0.88                    | 208.27         | 4.17E-05        |
| Model 2 | 0.91                    | 178.78         | 0.06            |
| Model 3 | 0.90                    | 186.90         | 0.85            |

A comparison of the models is shown here

Among the three models, I think the best model is Model 2. The reasons are listed as follows.

- > Model two has the highest adjusted  $R^2$ , and with the lowest SE.
- > All the coefficients are significant.
- We added the variable D<sub>1</sub>\*X<sub>1</sub> in model 3, but the adjusted R<sup>2</sup> doesn't increase. We think that the variable D<sub>1</sub>\*X<sub>1</sub> doesn't provide additional explanatory information to the model. In addition, if we add the variable D<sub>1</sub>\*X<sub>1</sub> in the model, we may make a mistake.

#### **Conclusion**

In my conclusion that the best model for determining expenditure for food is model 2, which is summarized as below.

 $Y_i = 1506.25 + 0.06 * X_i - 228.91 * D_i$ 

This model shows a positive correlation between expenditure for food and personal income after tax. Also male and female has significant difference. Male has more expenditure for food than female. And the difference can reach \$229. It is reasonable, because male always eat more than female. Finally, the adjusted  $R^2$  is 0.91, meaning that 91% of the expenditure for food can be explained by personal income after tax and sex.

# Appendix

| Age   | expenditure for food_female | personal<br>income after<br>tax female | expenditure for food_male | personal<br>income after<br>tax male |
|-------|-----------------------------|----------------------------------------|---------------------------|--------------------------------------|
| <25   | 1983                        | 11557                                  | 2230                      | 11589                                |
| 25-34 | 2987                        | 29387                                  | 3757                      | 33328                                |
| 35-44 | 2993                        | 31463                                  | 3821                      | 36151                                |
| 45-54 | 3156                        | 29554                                  | 3291                      | 35448                                |
| 55-64 | 2706                        | 25137                                  | 3429                      | 32998                                |
| >65   | 2217                        | 14952                                  | 2533                      | 20437                                |