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1 Introduction

House is often considered an expensive item to purchase. Housing sales and price are
subject to serial correlation and seasonal fluctuation. In this project, I study the monthly
housing sales under time series framework. I break down the variable further and identify
the time effect on each of the components. I then fit time series models and evaluate
the goodness-of-fit. Finally, I reserve 12 monthly data for each model and compare the
forecast with real data.

2 Data

I gather monthly housing data from the NEAS forum. Housing sales are presented in
thousands. Those numbers are broken down into 3 categories: ”"Not Started,” ”Under
Construction,” and ”Completed.” Because they are expressed in terms of housing unit,
so there is no need for CPI adjustment. The monthly data is available from January 1963
to March 2008, which is in the midst of housing market meltdown. A glance from Figure
suggests that the downward trend started since 2006.

I also downloaded the 10-year Treasury rates over the same time span. The general
consensus is that housing sales are negatively affected by mortgage rates, which is tight-
ened to 10-year Treasury rates. Mortgage rates varies by lender, borrower, and states,
just to list a few factors. 10 year treasury rate is considered the benchmark of mortgage
rates. I therefore include 10-year Treasury rates as the benchmark long-term interest
rate. I acquire the 10 year treasury rate from U.S. Department of the Treasury, dating
back to January 1, 1963 to March 1, 2008. [

A preliminary analysis of the variables in Table [I|shows a very high correlation among
Total Sales and Not Started (91%) and Total Sales and Under Construction (93%), while
it is only moderately high between Total Sales and Completed (65%). On the contrary,
the total sales does not seem to be affected by 10-year treasury as much (-40%). The
correlation can also be observed from Figure [1}

For the simplicity of the project, I merge the Completed and Under Construction as
Started, as opposed to Not Started. From a statistical standpoint, I am interested in
Not Started because it seems to capture the overall fluctuation well. 10-year Treasury
is then omitted, but it is worth researching for a more comprehensive model. In R, the

Thttp://www.treasury.gov/resource-center/data-chart-center /interest-rates/Pages/Text View.aspx?data=yield



Variables Correlation

TO & NO 0.915
TO & CO 0.651
TO & UN 0.934
TO & i10 -0.399
NO & ST 0.707

Table 1: Correlation

final 3 variables - Total Sales, Not Started, and Started - are coded as TO, NS, and ST,
respectively. Note that NS and ST are also highly correlated (71%.)

In Figure [2| all three time series shows left skewed distributions in the Q-Q plots
comparing to the theoretical normal line, indicating that the residual after fitting a normal
distribution does not behave randomly. The Box-Pierce tests of the three variables are
showing p-value close to zero, which means the time effect is significant for all series.

> Box.test(tsto)
Box-Pierce test

data: tsto
X-squared = 473.7546, df = 1, p-value < 2.2e-16

> Box.test(tsno)
Box-Pierce test

data: tsno
X-squared = 496.334, df

1, p-value < 2.2e-16
> Box.test(tsst)
Box-Pierce test

data: tsst
X-squared = 429.511, df

1, p-value < 2.2e-16

3 Analysis

3.1 Correlograms

Correlograms and partial autocorrelations are presented in Figure [3| {4 and 5] All three
of them have significant lag effects over the span of two years. Note that each bar
represents the autocorrelation of one month. The seasonal fluctuations are observable in
these graphs: the sales peak in January and bottom in July. With all the correlations



Variable Model = AIC  Log Likelihood

TO  AR(2) 3589.50  -1790.75
NO  AR(2) 2654.63  -1323.32
ST  AR(1) 325733  -1625.67

Table 2: Model Selection

above the critical values (the blue dashed lines), the time effect is strong. The pattern
repeats every 12 periods, which meets my expectation that housing sales are seasonal.

After removing linear independence, I obtain partial autocorrelograms of the three
variables. The seasonal effect is still observable for the first few lags.

I include the cross-correlations to study the pairwise relationships among three time
series and the relationship between Total Sales and interest rate. The lagged correlations
over plus and minus two years are revealed in Figure [l The positive lag effect among
three sales slowly dies down but still stay above the critical value. Seasonal fluctuation
is easily observable here. Interest rate on the lower-left corner of Figure [ has a negative
effect since the ACF lies below the 0 benchmark. The lower absolute ACF values and
smoothed curve suggest less autocorrelation and seasonality comparing to those among
the other three housing sales.

3.2 Model Selection

For each variable, I fit eight different ARIMA models: AR(1), AR(2), MA(1), ARMA(1,1),
ARI(1,1), ARI(2,1), IMA(1,1), and ARIMA(1,1,1). R generates several goodness-of-fit

criteria, including log-likelihood and Akaike information criterion:

AIC = —2In(loglikelihood) + 2K

where K is the number of free parameter. Higher likelihood and lower number of free
parameter (lower penalty) are preferable criteria. This implies that the smaller the AIC,
the better model fits. With model simplicity in mind, I choose AIC because it penalizes
extra parameters. Larger likelihood is emphasized without losing the balance towards
potential over-fitting.

From the AIC scores, the best model out of 8 options for each variables are summarized
in Table[2] Total Sales and Not Started Sales are best modeled by 2-terms autocorrelation
while Started are best captured by 1-term autocorrelation. It is slightly counterintuitive
from an individual standpoint: it is rare that a purchase this month will trigger one
next month. It is doubtful that individuals with moderate income can afford two houses
in consecutive months. This might be better explained by investment, though. A rise
housing demand raise the price, and a higher property value might attract more investors
due to higher rate of return.

A more detailed view on the coefficient shows that TO and NO have ¢; > 1 and a
negative ¢o while ST has ¢; < 1. Although the estimated 95% confidence intervals raises
my concern: the significancy of ¢y in NO, 0 falls into the 95% confidence interval. In
terms of hypothesis test, I cannot reject the null hypothesis and claim that this is an



Coefficient  S.E. 2.5% 97.5%

01 1.0465 0.0426  0.9630806  1.12993698
¢2  -0.1204  0.0426 -0.2039897 -0.03684711

Table 3: Fitting AR(2) of TO

Coefficient  S.E. 2.5% 97.5%

01 1.0143 0.0428 0.9304365 1.09821435
¢2  -0.0615  0.0428 -0.1454500 0.02248411

Table 4: Fitting AR(2) of NO

AR(2) instead of AR(1). Nevertheless, AR(2) reflects a better log-likelihood as well as
smaller AIC scores.

In Figure[7] 8] and [9} I take first difference for all three time series in (a) and com-
parisons of original versus detrended graph in (b). Differencing does not eliminate the
seasonal fluctuations, so other model design might be needed to capture the random
components.

In (b), I detrend the time series by regressing the series over time and plot the residu-
als. The upward dashed lines are flattened and are shown as dashed lines. However, the
detrending is slightly observable for Total Sales but not for Not Started and Started.

3.3 ’Best Fit’ and Seasonality

I then utilize the auto.arima() function in search of the ’best fit’. R generates the
desired output by allowing more parameters and detect seasonality. Table [6] summarizes
the result and compare AICs for both seasonal and non-seasonal AICs. Clearly, the
complicated models demonstrate superiority.

For Total Sales, R uggests ARIMA(2,1,4) model with seasonal AR(1) and MA(2) of
12 months period. AIC value 3233 is the smallest AIC among all the models I fit. The
parameters of ARIMA(2,1,4) are shown in Table @ Their 95% confidence interval are
estimated in Table [I0} Despite the statistical significancy, the non-seasonal model alone
is difficult to explain: for the first difference, there is an permanent effect of 2 periods

and temporary effect for 4 periods. Same challenge lies in the interpretation of NO and
ST.

Coefficient  S.E. 2.5% 97.5%
01 0.8894 0.0194 0.8513505 0.9273963

Table 5: Fitting AR(1) of ST


auto.arima()

Variable Seasonal Model Seasonal AIC Non-Seasonal AIC

TO  ARIMA(2,14)(1,0,2)[12]  3233.44 3589.50
NO  ARIMA(3,1,4)(2,0,0)[12]  2444.10 2654.63
ST ARIMA(5,1,1)(1,0,2)[12]  2943.19 3257.33

Table 6: Model Selection: auto.arimal()

1 P2 0, 0 05 04 P, 0, O,
Coefficient - 0.1419 -0.5480 -0.0862 0.4914 -0.1714 -0.1468 0.9871 -0.6861 -0.1172
S.E. 0.1268  0.0874 0.1278 0.0827 0.0429 0.0464 0.0101 0.0472 0.0443

Table 7: Best Fit of TO - ARIMA(2,1,4)(1,0,2)

o1 05 o3 01 0o 05 04 o, 0

Coefficient 0.4812 0.5193 -0.6029 -0.6739 -0.5695 0.7747 -0.1965 0.3800 0.2810
S.E. 0.1438 0.0953 0.1037 0.1465 0.1101 0.1280 0.0701 0.0448 0.0436

Table 8: Best Fit of NO - ARIMA(3,1,4)(2,0,0)

o1 o5 b3 ®4 o5 61 D, ©, Oy
Coefficient -0.9594 -0.3801 -0.2230 -0.1576 -0.1239 0.6833 0.9870 -0.7283 -0.1271
S.E. 0.1961 0.0857 0.0676 0.0581 0.0499 0.2043 0.0075 0.0433 0.0422

Table 9: Best Fit of ST - ARIMA(5,1,1)(1,0,2)

2.5 % 97.5 %

¢1 -0.3903844 0.10667266
¢y -0.7192424 -0.37676723
6, -0.3366312 0.16428790
0y 0.3293093  0.65343703
05 -0.2555484 -0.08728077
0, -0.2378219 -0.05585379
®, 09673379 1.00681726
©; -0.7785762 -0.59369039
O, -0.2040221 -0.03046210

Table 10: 95% CI of ARIMA(2,1,4)(1,0,2) : TO



2.5 % 97.5 %

¢1 0.1993971  0.76296440
P2 0.3325591  0.70607633
@3 -0.8061097 -0.39971800
0 -0.9611182 -0.38667222
0, -0.7853569 -0.35373310
05 0.5238807 1.02560318
0, -0.3338350 -0.05915535
®;  0.2921994  0.46785117
®y  0.1954599  0.36653448

Table 11: 95% CI of ARIMA(3,1,4)(2,0,0) : NO

2.5 % 97.5 %

o1 -1.3437015 -0.57514995
@2 -0.5480570 -0.21204488
¢z  -0.3554864 -0.09058013
¢4 -0.2714431 -0.04373513
o5 -0.2216991 -0.02610741
6; 0.2829646  1.08362039
®, 09722973 1.00167813
©; -0.8131099 -0.64349299
O, -0.2097842 -0.04437002

Table 12: 95% CI of ARIMA(5,1,1)(1,0,2) : ST



Oct 07 Nov’07 Dec’07 Jan’08 Feb’08 Mar’08

AR(2) 71.2 70.1 69.1 68.2 67.3 66.6
ARIMA  63.1 04.8 53.8 27.6 64.7 78.3
Actual o7 45 44 44 47 o1

Table 13: Prediction vs Actual: TO

Apr'07 May’07 Jun’07 Jul’'07 Aug’07 Sep’07

AR(2) 79.8 78.2 76.5 75.0 73.6 72.3
ARIMA 743 78.3 5.7 70.1 71.6 63.1
Actual 83 79 73 68 60 23

Table 14: Prediction vs Actual: TO

3.4 Goodness of Fit

Model diagnostic for AR(2) and ARIMA(2,1,4)(1,0,2) models of Total Sales are shown
in Figure [10] ARIMA(2,0,4)(1,0,2) outperform because the ACF residuals are all below
the critical values, while those of AR(2) are still significant for several lags.

This is also evidenced by the Ljung-Box statistics: for ARIMA(2,0,4)(1,0,2), the p-
values are high among all lags, which is the lack of proof for significant lag effects. The
same statistics shows low values for all lags except for lag 0 in AR(2), implying that the
lag effects are statistically different from 0. Similar patterns can be seen in [11] and
except that AR(2) removes the significancy of lag 2 for Not Started. This resulted in a
high p-value for lag 2 Ljung-Box statistics in the third graph of Figure (a).

4 Forecasting

I remove a year worth of data from April 2007 to March 2008, and I project forward
12 months and compares the result against actuals in Table [I3] to [16l The forecasting
performance is also evidenced by graphs. In Figure the prediction captured the
seasonality, as appeared in the upward shape. However, the overall actual sales are lower
almost consistently. In reality, it was when subprime mortgage crisis stroke the housing
market.

In Figure [13] the prediction of Total Sales with AR(2) and ARIMA(2,1,4)(1,0,2) are
presented side-by-side. Judging from the gaps between actual and predicted lines, I

Oct ’07 Nov'07 Dec’07 Jan’08 Feb’08 Mar’08

AR(Z) 21.1 20.9 20.6 20.4 20.2 20.0
ARIMA 14.6 11.6 114 13.0 12.0 15.5
Actual 12 9 10 10 11 14

Table 15: Prediction vs Actual: NO



Apr’07 May’07 Jun’07 Jul’'07 Aug’07 Sep’07

AR(2) 22.8 22.5 22.2 21.9 21.6 214
ARIMA  20.1 19.1 17.6 17.7 19.5 14.7
Actual 22 20 18 15 14 11

Table 16: Prediction vs Actual: NO

Oct 07 Nov’07 Dec’07 Jan’08 Feb’08 Mar’08

AR(1) 48.5 47.7 47.1 46.5 46.0 45.5
ARIMA 495 45.3 44.1 43.7 48.5 26.9
Actual 45 37 33 35 36 36

Table 17: Prediction vs Actual: ST

believe the more complexed ARIMA(2,1,4)(1,0,2) model capture the trend better than
AR(2). Although, the upward trend in prediction widens the gap in the final months.
Similar conclusion can be drawn for Not Started except that the gap does not seem to be
widened towards the end of ARIMA(3,1,4)(2,0,0). That leaves me more confident with
forecasting on Not Started over Total Sales. Future sales might be better modeled by
Not Started.

Started sales forecast is more ambiguous in terms of the trade-off between model
complexity and pattern fitting. The ARIMA(5,1,1)(1,0,2) demonstrates a wide difference
towards the end, while the flat AR(1) seems to have a moderate gap without a complicated
model.

5 Conclusion

Overall, the ARIMAs capture the seasonality of all three series to a certain extend.
ARIMA(3,1,4)(2,0,0) on Not Started Sales appears to be more accurate than the other
two variables. Moving average, lagged regression, and differences are applied in the end
result.

Seasonality effect is captured by second difference. The graph of the final output has
a very similar shape comparing to the actual numbers.

Apr'07 May’07 Jun’07 Jul’'07 Aug’07 Sep’07

AR(1) 55.3 53.8 52.5 51.3 50.2 49.3
ARIMA 544 58.5 57.5 53.2 54.1 49.8
Actual 61 59 55 53 47 43

Table 18: Prediction vs Actual: ST



5.1

Potential Improvements

Log-transformation

Box-Cox plots in Figure shows that A lies between (0,1). They suggest that
log-transformation might be feasible. However, it is not attempted due to the
difficulty of interpretation. It can be difficult to justify the underlying assumption
of multiplicativity.

Recasting

In practice, the difference between theory and actual can be taken into considera-
tion. The behavior of the residuals can be carefully studied and further contributed
to refine the model. In practice, it is also acceptable to assign certain credibility
factors in reflection of the plausibility of data over models.

10-year treasury rate

Although the 10-year treasury rate is omitted in this project, a negative 40% cor-
relation cannot be ignored in reality. The causality needs further verification, but
there is little doubt that a crucial macroeconomic variable like interest rate impacts
the housing market.

Overfitting

The ARIMA models generated by R are appealing because of the goodness of fit.
However, it is still challenging to explain the large amount of parameters in a
meaningful way. Over-fitting might exists, so further verification is required before
an extensive use of model. It is particularly true for a huge investment like housing
sales.
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House Sales Breakdown
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Figure 1: Housing Sales Breakdown versus 10-Year Treasury Rates: 1963-2008
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Figure 3: Autocorrelation and Partial Autocorrelation: Total
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Figure 4: Autocorrelation and Partial Autocorrelation: Not Started

13




ACF

Partial ACF

0.8

0.4

0.0

0.6

0.2

-0.2

Series tsst

Lag

Series tsst

Lag
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Not Started House Sales Difference

‘C_> —
w -
o -
l.l? —
o |
T T T T
1970 1980 1990 2000
Time
(a)
Original Not Started
o _
w0
o _
@
‘C_> -
T T T T
1970 1980 1990 2000
Time
Detrended Not Started
o |
N
‘9 -
3
kel o -
I —
o T T T T
1970 1980 1990 2000
Index

Figure 8: (a) First Difference and (b) Detrending: Not Started
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Started House Sales Difference
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Standardized Residuals
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Figure 10: Diagnostics for Total Sales (a) AR(2) and (b) ARIMA(2,1,4)
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