Regression analysis Module 10: adjusted R² practice problems

(The attached PDF file has better formatting.)

** Exercise 10.1: Adjusted R²

A statistician regresses the response variable Y on k explanatory variables $X_1, X_2, ..., X_k$ and one intercept.

The variance of the observed Y values is 10 and the estimated σ_{ϵ}^{2} (the error variance) is 2.

- A. What is the total sum of squares (TSS)?
- B. What is the residual sum of squares (RSS)?
- C. What is the regression sum of squares?
- D. What is the R^2 of the regression?
- E. What is the adjusted R²?

Part A: The total sum of squares TSS is the observed variance \times (N-1), where N = the observations.

Part B: The residual sum of squares RSS is $\sigma_{\epsilon}^2 \times (N-k-1)$.

Note: These relations are generally written in the reverse form: variance = TSS / (N-1); $\sigma_{\epsilon}^2 = RSS / (N-k-1)$.

Part C: The regression sum of squares RegSS is TSS – RSS.

Part D: The R^2 is ResSS / TSS.

Part E: The adjusted $R^2 = [RegSS / (N-k-1)] / [TSS / (N-1)] = 1 - \sigma_{\epsilon}^2 / the variance of the response variable:$

adjusted $R^2 = 1 - 2 / 10 = 80\%$.

The general formula is that the adjusted $R^2 = (var(Y) - \sigma_s^2) / var(Y)$.

- If we are given RSS and TSS (or RSS and RegSS, or RegSS and TSS), but not N (the number of observations) or k (the number of parameters), we can derive R² but not the adjusted R².
- If we are given the variance of the Y values (the response variable) and the σ^2_{p} , but not N (the number of observations) or k (the number of parameters), we can derive the adjusted R² but not the simple R².