(The attached PDF file has better formatting.)
** Exercise 10.1: Adjusted R^{2}
A statistician regresses the response variable Y on k explanatory variables $X_{1}, X_{2}, \ldots, X_{k}$ and one intercept.
The variance of the observed Y values is 10 and the estimated $\sigma^{2}{ }_{\varepsilon}$ (the error variance) is 2 .
A. What is the total sum of squares (TSS)?
B. What is the residual sum of squares (RSS)?
C. What is the regression sum of squares?
D. What is the R^{2} of the regression?
E. What is the adjusted R^{2} ?

Part A: The total sum of squares TSS is the observed variance $\times(\mathrm{N}-1)$, where $\mathrm{N}=$ the observations.
Part B: The residual sum of squares RSS is $\sigma^{2}{ }_{\varepsilon} \times(N-k-1)$.
Note: These relations are generally written in the reverse form: variance $=T S S /(N-1) ; \sigma_{\varepsilon}^{2}=R S S /(N-k-1)$.
Part C: The regression sum of squares RegSS is TSS - RSS.
Part D: The R^{2} is ResSS / TSS.
Part E: The adjusted $R^{2}=[\operatorname{RegSS} /(N-k-1)] /[T S S /(N-1)]=1-\sigma_{\varepsilon}^{2} /$ the variance of the response variable:

$$
\text { adjusted } R^{2}=1-2 / 10=80 \% \text {. }
$$

The general formula is that the adjusted $R^{2}=\left(\operatorname{var}(Y)-\sigma_{\varepsilon}^{2}\right) / \operatorname{var}(Y)$.

- If we are given RSS and TSS (or RSS and RegSS, or RegSS and TSS), but not N (the number of observations) or k (the number of parameters), we can derive R^{2} but not the adjusted R^{2}.
- If we are given the variance of the Y values (the response variable) and the $\sigma^{2}{ }_{\xi}$, but not N (the number of observations) or k (the number of parameters), we can derive the adjusted R^{2} but not the simple R^{2}.

