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Introduction
I was curious about how car sales have changed over time.  This time series project looks at monthly new car dealer sales data from January 1992 through December 2007.  I used all available data for this project. I modeled through the end of December 2007.
Data Set Analysis

I chose to use all available data from the NEAS VEE discussion forum because I felt that 16 years of monthly data was plenty to gain a good understanding of the long-term trends and be able to detect seasonality patterns.
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The pattern of new car dealer auto sales persists when looking at the natural log of sales, as shown in the next exhibit.
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I then took the first differences of the natural logs to try to find further patterns.
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It is not clear from the graph of the first difference if the entire data set is stationary.  It appears that there may be an oscillating pattern in the chart above.  The graphs on the next page show the autocorrelations of both the natural log of new car sales and the first differences of the natural logs of new car sales.  Focusing on second graph, the autocorrelations of first differences of natural logs trail off to zero towards the end of the period.  This indicates that an AR(1) model may be appropriate for modelling the time series. 
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Analysis
Model specification

The first differences of the natural logarithms trail off to zero rather than go to zero immediately, so I use an autoregressive model instead of a moving average model.  I tested to see what would fit better, an AR(1) or AR(2) model.  The table below shows the results to fitting these models.
	 
	R Square
	Adjusted R Square
	P-Value Ф1
	P-Value Ф2

	AR(1)
	0.07787
	0.07291
	0.000105306
	NA

	AR(2)
	0.07921
	0.06925
	0.000113498
	0.605452972


The R squared increased as the order of p increased, which is expected since R squared is sensitive to the independent variables. However, the adjusted R squared value decreases as the number of variables increases.  Using the adjusted R squared values, it appears that AR(1) is the best fit out of the two models tested. It may be necessary to test further variables in the future. 
The two charts on the following page show the autocorrelation functions of the modeled time series.  It appears that AR(1) most closely matches the original data, but the other two are not that far off. The value of the Ф1 is close to 0 for all 3 models, suggesting that using an AR(1) would result in a random walk with drift. 
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Diagnostic Testing
After running the analysis on the two models that I built, I decided to go with the AR(1) model.  In order to continue using the AR(1) model, I performed some diagnostic testing.  The calculated Durbin-Watson statistic is 2.02, which is very close to 2, so I can’t reject the null hypothesis. Therefore, I determine that there is no serial correlation between the terms. 
My next calculation was to determine the Box-Pierce Q statistic. The Q statistic was calculated for the 188 observations and the autocorrelation function for the first 25 lags of the residuals.  The Q statistic of 199.83 is compared with the chi-squared critical value at 0.01 for 24 degrees of freedom, which is 42.98. The Q statistic of 199.83 is greater than this critical value, so I cannot accept that all the autocorrelations of the residuals are 0 with a 99% confidence level. This test also does not indicate that the error terms could be a white noise process. 
Finally, I performed a Bartlett test to see if the sample autocorrelation coefficients of the residuals have an approximate normal distribution with mean zero and standard deviation 1/(T.  For this project, T = 188 which is the number of observations. The standard deviation is .0729. At least one of the autocorrelations is outside of +/-(2*.0729) = +/-.1459, so I may not be able to accept that the error terms are approximately normally distributed.  
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Conclusions
I analyzed the data provided using various graphs and statistics to determine the model that best fits the actual data.  After examining the graphs and looking at resulting statistics, I decided to use an AR(1) model. The AR(2) would also have effectively fit the data, but when choosing between one and two variable models with little difference in results, I choose the fewer variables.  Statistics that I calculated for the chosen model were the Durbin Watson statistic and the Box-Pierce Q statistic.  The Durbin Watson test does not support a white-noise process and the Box-Pierce Q test does not confirm that the error terms follow a white noise process.  The Bartlett test had outliers, which does not allow me to accept that the error terms follow a normal distribution.  Below is a graph that compares the historical values and the simulated values. It can be seen that the values are very close, so I can conclude that I built an appropriate model. 
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