Student project for NEAS VEE- Time Series

Death caused by Cancer in Thailand

Areerat Maiam

Introduction

In Thailand during past 5 years, cancer becomes number 1 of reason caused Thai people die. In year 2011, cancer caused about 15% of all deaths in Thailand and 13% of all human deaths worldwide. Death rate from cancers increases from 85 to 95 (per 100K) in 5 years.

The Cancers is a broad group of diseases involving unregulated cell growth which are over 200 different cancers. Rates are rising as more people live to an old age and as mass lifestyle changes occur in the developing world. This project attempts to perform a time series analysis of the death by cancer in Thailand

 Table 2.3.6 Number of Deaths and Death Rates per 100,000 Population by Leading Causes of Death, 2007 - 2011 in Thailand

 List
 Cause
 No of Deaths by Leading cause 2007
 Death Rates per 100,000 Population 2008
 Death Rates per 100,000 Population 2007
 Death Rates per 100,000 Population 2007
 2008
 2009
 2010
 2011

 Total Death
 393,255
 397,327
 393,916
 411,331
 414,670
 625
 629
 621
 646
 644

	Total Death	393,255	397,327	393,916	411,331	414,670	625	629	621	646	646
1	Cancer	53,434	55,403	56,058	58,076	61,082	85	88	88	91	95
		14%	14%	14%	14%	15%					
2	Accident	35,661	34,851	35,304	32,861	33,868	57	55	56	52	53
		9%	9%	9%	8%	8%					
3	Hypertension and cerebrovascular disease	15,286	15,596	15,648	20,018	22,947	24	25	25	31	36
		4%	4%	4%	5%	6%					
4	Disease of the heart	18,452	18,820	18,375	18,399	20,130	29	30	29	29	31
		5%	5%	5%	4%	5%					
5	Pneumonia and other diseases of lung	14,179	14,542	14,542	16,369	16,884	23	23	23	26	26
		194	/19/	494	19/	194					

Source : Health Information Unit, Bureau of Health Policy and Strategy

The table below show no of deaths by leading cause in 2007 -2011.

Data Exploration

The data for this project is obtained from National Economic and Social Development Board (NESDB) (web address:

http://social.nesdb.go.th/SocialStat/StatReport Final.aspx?reportid=441&template=2R1C&yeartype
=M&subcatid=15)

The following Graph below displays death rate by cancer from 1998 – 2012. It is shown upward direction which implied non-stationary.

In this study, the data used for this project is annual cancer incident rate from 1998 to 2012 (15 years) as below:-

Cause of Death	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Cancer	48.7	58.6	63.9	68.4	73.3	78.9	81.3	81.4	83.1	84.9	87.6	88.3	91.2	95.2	98.5

Analysis & Model

We can observe from the graph that the death caused by cancer demonstrates an upward trend over time and therefore non-stationary. To confirm this, we will compute the sample autocorrelation function ("ACF") at different lags using the following formula:

$$r_{k} = \frac{\sum_{t=k+1}^{n} (Y_{t} - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y})^{2}}$$
 for $k = 1, 2, ...$

The subsequent correlogram plots the calculated ACF versus lag k:

The above illustration shows that ACF is fall below zero starting from lag 6, proving non-stationary. We now proceed with obtaining stationary through differencing.

Comparing the R-Square for AR(1) and AR(2), we see that they are all quite close to 1. AR(1) has better R-Square than AR(2).

SUMMARY OUTPUT	AR(1)							
Rearession St	tatistics							
Multiple R	0.990009556							
R Square	0.980118921							
Adjusted R Square	0.978462164							
Standard Error	1,956052689							
Observations	14							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	2263.503437	2263.503437	591.5889598	1.40503E-11			
Residual	12	45.91370545	3.826142121					
Total	13	2309.417143						
	Coefficients	Standard Error	t Stat	P-value	Lower 05%	Upper 05%	Lower 05.0%	Upper 05.0%
Intercent	-14 80881648	3 830441308	-3 866086252	0.002243742	-23 15463114	-6 463001825	-23 15463114	-6 463001825
X Variable 1	1.138836093	0.046822133	24.32260183	1.40503E-11	1.036819429	1.240852756	1.036819429	1.240852756
SUMMARY OUTPUT	AR(2)							
Regression St	tatistics							
Multiple R	0 97129654							
R Square	0.943416969							
Adjusted R Square	0.938273057							
Standard Error	3.184514929							
Observations	13							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	1859.930588	1859.930588	183,4045722	3.32525E-08			
Residual	11	111.5524887	10.14113534					
Total	12	1971.483077						
	Onefficients	Otom dand E	4.04-4	Durahua	1 050/	Unana 050/	L 05 00/	Unana 05.00/
Intercent		Standard Effor	1 5181	P-value	LOWER 90%	0.000740004	LOWER 95.0%	0.060710001
Mercept	-20.00000/00	7.651095647	-3.502853564	0.004945392	-43.04001562	-9.960719691	-43.04001562	-9.960719691
A variable 1	1.24350249	0.091820907	13.54269442	3.32525E-08	1.041406036	1.445596945	1.041406036	1.445598945

Conclusion

