# **Regression Analysis Student Project**

# Predict transportation accident in Thailand

## By Areerat Maiam

## Introduction

The below table show statistic of transportation accident separated by type of vehicle caused accident from 2006-2013. It shows that no of accident has been reduced in good direction. In 2013, no of accident has reduced by more than half of 2006. Divided by type of vehicles, most of the accidents mainly come from motorcycle, car, truck and public transportation, especially from motorcycle.

| Year | TOTAL no of<br>Transportation<br>Accidents | Type of Vehicle |          |            |                            |        |  |  |
|------|--------------------------------------------|-----------------|----------|------------|----------------------------|--------|--|--|
|      |                                            | Motorcycle (X1) | Car (X2) | Truck (X3) | Public transportation (X4) | Others |  |  |
| 2006 | 178,753                                    | 75,752          | 48,273   | 27,871     | 6,531                      | 20,326 |  |  |
| 2007 | 174,487                                    | 72,373          | 48,662   | 29,169     | 6,168                      | 18,115 |  |  |
| 2008 | 152,399                                    | 60,248          | 46,704   | 24,652     | 5,074                      | 15,721 |  |  |
| 2009 | 149,217                                    | 56,658          | 47,736   | 25,526     | 4,815                      | 14,482 |  |  |
| 2010 | 104,494                                    | 38,815          | 34,638   | 17,247     | 3,401                      | 10,393 |  |  |
| 2011 | 55,657                                     | 19,311          | 19,522   | 8,702      | 1,833                      | 6,289  |  |  |
| 2012 | 55,058                                     | 19,122          | 18,795   | 8,823      | 1,847                      | 6,471  |  |  |
| 2013 | 57,238                                     | 20,239          | 19,168   | 9,506      | 1,726                      | 6,599  |  |  |

This regression analysis takes a look at the relationship between type of vehicles caused accident vs total no of transportation due to accident and create regression model of total no of transportation accident. Graph below show no of accident from each type of vehicle from 2006 - 2013



#### Data Exploration

The data for this project is obtained from Transport Statistic sub-division, and planning division (web address: <u>http://apps.dlt.go.th/statistics\_web/statistics.html</u>)

The available statistic data from this analysis are from 2006-2013 (8 years/observations). The variables will be assigned as:

- 1. Y denote the total no of actual transportation accident
- 2.  $X_1$  represent no of accidents from Motorcycle
- 3.  $X_2$  represent no of accidents from car
- 4.  $X_3$  represent no of accidents from truck
- 5.  $X_4$  represent no of accidents from public transportation

## Analysis & Model

#### Model 1: use all 4 variables to create regression model

All data analysis will be done using Microsoft Excel's regression add-in. We will first take a look at the first scenario, where all variables are used in the following model:

#### $Y=\alpha+\theta_1X_1+\theta_2X_2+\theta_3X_3+\theta_4X_4+\varepsilon$

Using Excel's regression add-in, the following summary output is obtained:

| SUMMARY OUTPUT        | Model 1      |                |             |             |                |             |              |             |
|-----------------------|--------------|----------------|-------------|-------------|----------------|-------------|--------------|-------------|
| Regression St         | tatistics    |                |             |             |                |             |              |             |
| Multiple R            | 0.999992065  |                |             |             |                |             |              |             |
| R Square              | 0.99998413   |                |             |             |                |             |              |             |
| Adjusted R Square     | 0.999962969  |                |             |             |                |             |              |             |
| Standard Error        | 331.134936   |                |             |             |                |             |              |             |
| Observations          | 8            |                |             |             |                |             |              |             |
| ANOVA                 |              |                |             |             |                |             |              |             |
|                       | df           | SS             | MS          | F           | Significance F |             |              |             |
| Regression            | 4            | 20727100484    | 5181775121  | 47257.262   | 1.58057E-07    |             |              |             |
| Residual              | 3            | 328951.0375    | 109650.3458 |             |                |             |              |             |
| Total                 | 7            | 20727429435    |             |             |                |             |              |             |
|                       | Coefficients | Standard Error | t Stat      | P-value     | Lower 95%      | Upper 95%   | Lower 95.0%  | Upper 95.0% |
| Intercept             | 2301.348411  | 645.1061563    | 3.567394899 | 0.037621672 | 248.3327081    | 4354.364115 | 248.3327081  | 4354.364115 |
| Motorcycle            | 1.386036902  | 0.17729742     | 7.817580793 | 0.004357576 | 0.821797384    | 1.950276419 | 0.821797384  | 1.950276419 |
| Car                   | 1.050989798  | 0.07786056     | 13.498359   | 0.000879251 | 0.803202745    | 1.298776851 | 0.803202745  | 1.298776851 |
| Truck                 | 0.562025989  | 0.211422166    | 2.658311567 | 0.076448805 | -0.110813701   | 1.234865679 | -0.110813701 | 1.234865679 |
| Public transportation | 0.743134014  | 1.826778542    | 0.406800275 | 0.711437427 | -5.070490607   | 6.556758636 | -5.070490607 | 6.556758636 |

 $\label{eq:Y} Y = 2301.34841149647 + 1.38603690163428X1 + 1.05098979763321X2 + 0.562025988643144X3 + 0.743134014221157X4 + \epsilon$ 

With above model, R square, adjusted R square are very close to 1 which implies that the model is best fit linear regression correlated with these variables. However, it uses 4 variables to create regression model. Therefore, we will minimize no of variables from 4 to be 3 in next model (model 2).

**Model 2:** Take out the truck variable from model 1 due to its coefficients, 0.562026 is less than coefficient of other variables

 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_4 X_4 + \varepsilon$ 

Again, using Excel's regression add-in, we obtain the following output: SUMMARY OUTPUT Model 2

| Degrossion        | Statistics  |
|-------------------|-------------|
| Regression        | Statistics  |
| Multiple R        | 0.999973373 |
| R Square          | 0.999946746 |
| Adjusted R Square | 0.999906806 |
| Standard Error    | 525.3114331 |
| Observations      | 8           |

|            | df |     | SS          | MS          | F           | Significance F |
|------------|----|-----|-------------|-------------|-------------|----------------|
| Regression |    | 3 2 | 20726325626 | 6908775209  | 25036.13912 | 5.31729E-09    |
| Residual   | 4  | 4   | 1103808.407 | 275952.1017 |             |                |
| Total      | 1  | 7 2 | 20727429435 |             |             |                |

|                       | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%    | Upper 95%   | Lower 95.0%  | Upper 95.0% |
|-----------------------|--------------|----------------|--------------|-------------|--------------|-------------|--------------|-------------|
| Intercept             | 2149.3658    | 1019.367397    | 2.10852908   | 0.102660597 | -680.8518205 | 4979.583421 | -680.8518205 | 4979.583421 |
| Motorcycle            | 1.606722875  | 0.248525643    | 6.465018468  | 0.002948436 | 0.916705068  | 2.296740681 | 0.916705068  | 2.296740681 |
| Car                   | 1.227702238  | 0.064308434    | 19.09084318  | 4.43556E-05 | 1.0491534    | 1.406251076 | 1.0491534    | 1.406251076 |
| Public transportation | -0.650072257 | 2.776169575    | -0.234161581 | 0.826356523 | -8.357954683 | 7.057810169 | -8.357954683 | 7.057810169 |

 $\mathsf{Y} = \mathsf{2149}.36580015109 + 1.60672287455829\mathsf{X1} + 1.22770223803468\mathsf{X2} + -0.650072257323921\mathsf{X4} + \varepsilon$ 

Again, for model 2, R square, adjusted R square are still very close to 1 which implies that the model is best fit linear regression correlated with these variables.

#### Results

ΔΝΟΥΔ

Both models are also best fit linear regression and can be best model to use. Look at their correlation matrix as below. All variables are almost perfectly correlation with other variables.

| Correlation           |             |             |             |                       |        |
|-----------------------|-------------|-------------|-------------|-----------------------|--------|
|                       | Motorcycle  | Car         | Truck       | Public transportation | Others |
| Motorcycle            | 1           |             |             |                       |        |
| Car                   | 0.970106494 | 1           |             |                       |        |
| Truck                 | 0.988949501 | 0.991214108 | 1           |                       |        |
| Public transportation | 0.999194555 | 0.96498747  | 0.985096266 | 1                     |        |
| Others                | 0.996418827 | 0.952441102 | 0.974473338 | 0.997040561           | 1      |

In order to compare estimation value from model 1& 2 vs actual value, we have taken into account regression function, then summarize and plot graph as shown below.

| Year | Total no of transportation accident -<br>(Actual) | Estimation from Model 1 | Estimation from Model 2 |
|------|---------------------------------------------------|-------------------------|-------------------------|
| 2006 | 178,753                                           | 178,548.48              | 178,881.09              |
| 2007 | 174,487                                           | 174,733.65              | 174,165.52              |
| 2008 | 152,399                                           | 152,518.45              | 152,991.34              |
| 2009 | 149,217                                           | 148,925.94              | 148,658.57              |
| 2010 | 104,494                                           | 104,725.22              | 104,828.57              |
| 2011 | 55,657                                            | 55,837.44               | 55,952.41               |
| 2012 | 55,058                                            | 54,889.82               | 54,747.10               |
| 2013 | 57,238                                            | 57,123.99               | 57,078.40               |

Comparison of actual transportation accident vs estimation from model 1 and 2



## Conclusion

From result above, the estimation from either model 1 and model 2 are also able to be best fit linear regression. If all information are available, we prefer to use regression from model 1.