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Introduction

Loss development triangles have long been relied upon to estimate ultimate loss and
expense in property casualty insurance. Two commonly employed techniques are
chain ladder development and the Bornhuetter-Ferguson method. Ultimate paid and
incurred loss and expense amounts may be calculated using either of these
approaches. Separate estimates of ultimate losses and expenses may also be
determined. It is possible, if not practical, to produce up to 12 different sets of
ultimate values from which a selection is made for each year in the experience period.
Having numerous methods from which to choose does not increase an actuary’s
ability to make an informed judgment as to which estimate or combination of
estimates is likely to be correct. Nor do any of these methods provide any type of
diagnostic information that can used to determine how well the projected ultimate
loss and expense amounts describe the trends affecting the underlying data. At best,
an actuary can retrospectively assess the accuracy of their selections. This practice is
unresponsive to changes in the nature of loss development and trend. It can also be
misleading since a method that was the most reliable for one evaluation of a
particular year is not necessarily representative of that year’s performance at
subsequent evaluations. A loss estimation process that relies on linear least-squares
regression analysis provides a single value for the ultimate loss in each year and a set
of diagnostic tools for assessing how well the data fit the proposed model.

Loss Development Model

Zehnwirth (1994) described a statistical model for loss development, which seeks to
estimate the trends that affect how incremental paid losses change. Trends represent
the percentage change over time along the three dimensions of a loss development
triangle: accident year, development year, and calendar year. Losses aggregated
according to the year in which a claim occurred are considered to be on an accident
year basis. The trend affecting this dimension is generated by changes in the number
of exposures insured. Regular historical evaluations of each accident year represent
the development years, which are typically measured at the end of the accident year
and every 12 months thereafter. The additional amount of loss paid at each
evaluation of an accident year is the development year trend. This is also known as
loss development and typically produces a decreasing amount of incremental paid
loss as development years increase. Finally, a calendar year is comprised of the
accident year plus the number of development years over which it has been
evaluated. Inflation is the factor that causes incremental paid losses to change along
this dimension. An equation describing this model is as follows:

Equation 1
Y=o ()X * (B2)"X2* (Bs) X3z * e

In this formula Y is the incremental paid loss, X; is the development year, X, the
calendar year, and accident year X3. The amount of incremental paid loss in the first
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accident year and development period is shown as o with the parameters (31, 2, and
B3 representing the trends of loss development, inflation, and exposure growth,
respectively. Finally, a residual term, e, is added to the model to account for the fact
that it cannot perfectly describe the underlying data. It is assumed the residuals are
normally distributed, an assumption which may be subject to scrutiny once the data
are fit to the model.

The purpose of this project is to use linear least-squares regression, an additive
model, to estimate the trends in the incremental paid loss triangle. It is clear that the
model proposed in Equation 1 is multiplicative. However, the natural logarithm of
this model is additive and transforming it in this manner yields the following revised
model.

Equation 2
In(Y) =In(a) + X1 *In(B1) + X2 * In(B2) + X3 * In(B3) + In(e)

It will be necessary to calculate the natural logarithm of the incremental paid losses
and understand that this transformation will need to be undone if one were to
estimate incremental paid loss amounts beyond the evaluation date of the loss
triangles. With this in mind, the data will be fit to this model using the R software
environment provided by The R Project for Statistical Computing.

Model Fitting

The initial attempt to fit the data to the model outlined in Equation 2 and estimate the
coefficients In(a), In(f31), In(B2), and In(33) produced the results shown in Table 1.

Table 1: R Output for Equation 2

Call:
Im(formula = In.incr.paid ~ DY + CY + AY, data = df)

Residuals:
Min 1Q Median 3Q Max
-2.0239 -0.4651 0.2093 0.5259 1.0711

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.03220 0.24936 60.283 < 2e-16 ***

DY -0.19287 0.04443 -4.341 6.57e-05 ***

CcY 0.09729 0.04443 2.190 0.033*

AY NA NA NA NA

Signif. codes: 0 “*** 0.001 “** 0.01 “*' 0.05"0.1°" 1
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Residual standard error: 0.699 on 52 degrees of freedom
Multiple R-squared: 0.266, Adjusted R-squared: 0.2378
F-statistic: 9.422 on 2 and 52 DF, p-value: 0.0003222

The coefficient associated with accident year is undefined. As was mentioned above,
the calendar year equals accident year plus development year. Calendar year is
clearly a linear combination of the other two explanatory variables. This is known as
collinearity and a perfect linear relationship between variables will result in least-
squares coefficients that do not have a unique solution. One means for coping with
collinearity is model respecification. The model as it is currently specified attempts
to estimate three kinds of trend that affect incremental paid losses. Restating the
model to only estimate two of these trends will eliminate the perfect linear
relationship. As it turns out, one of these trends is already known. The amount of
incremental paid loss across accident years is related to exposure volume, assuming
the exposure base is adequately descriptive of and responsive to the underlying risk.
The exposures in each year are known and can be used to index the losses and
remove the affect of this trend, where Y’ denotes the adjusted incremental loss. The
new model, with the accident year variable and coefficient removed, is outlined in
Equation 3 with results displayed in Table 2.

Equation 3
In(Y") =In(a) + X1 *In(B1) + X2 * In(B2) + In(e)

Table 2: R OQutput for Equation 3

Call:
Im(formula = In.adj.incr.paid ~ DY + CY, data = df)

Residuals:
Min 1Q Median 3Q Max
-1.66914 -0.43375 0.08704 0.52881 0.97994

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.67746 0.23845 61.555 < 2e-16 ***
DY -0.15540 0.04248 -3.658 0.000594 ***

CcY 0.05983 0.04248 1.408 0.165035

Signif. codes: 0 “*** 0.001 “** 0.01 “*’ 0.05’0.1°" 1

Residual standard error: 0.6684 on 52 degrees of freedom
Multiple R-squared: 0.2075, Adjusted R-squared: 0.177
F-statistic: 6.808 on 2 and 52 DF, p-value: 0.002366
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Removing accident year from the model has allowed for a unique solution to found
and several conclusions may be drawn from the output of the regression model. The
residual standard error of 0.6684 is small relative to the magnitude of response
variable In(Y’) and the p-value of the F-statistic is rather close to zero. There is cause
to reject the omnibus null hypothesis of In(f31) = In(B2) = 0 in favor of the alternative
where at least one of the coefficients influences the model. While these metrics
suggest the model is performing well, R? indicates that only 20.75% of the variation
in the response variable is captured by its regression on development and calendar
years. Examining the regression output at a more granular level is necessary in light
of this observation.

The t-distribution statistics for the regression coefficients provide a more detailed
look at how well this model fits the data. The null hypotheses of In(f1) = 0 and In((32)
= 0, if not rejected, would suggest the explanatory variables do not impact the
regression. The p-values for the coefficients associated with In(a) and In(B1) are
nearly zero indicating it is very unlikely they do not influence the response variable.
Additionally, these parameters for the intercept and development year appear to be
rather precisely estimated since they are at least several times greater than their
standard errors in absolute terms. Calendar year does not yield statistics that are
nearly as promising. A standard error that is large relative to the coefficient suggests
the estimate of this parameter is not very precise. Also, the usefulness of this
parameter in the model is suspect given that its p-value of 0.165035 is quite far from
zero. Closer examination of the calendar year coefficient will be necessary to
determine if it is possible to improve the fit and stability of this parameter. Various
graphical representations of the data can be useful in this investigation.

A useful visual tool for evaluating the fit of a linear model is the residual plot. More
specifically, examining the mean residual by year will highlight any inconsistencies
that might be present in the data. Plots of the mean residual by development and
calendar year are shown below in Figures 1 and 2. Both of these plots show that
coefficients estimated for development and calendar year are not constant. A
regression equation that accounts for differing trends is needed in order to improve
the fit of the model.
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Dummy Variables

Introducing a dummy variable makes it possible to control for qualitative differences
in the data. Development year trend appears to change discretely after period 2
while 4 or 7 may be transition points for calendar year. A dummy variable for
development year will be introduced first since the mean residual plot is more clearly
defined. The variability in development years 9 and 10 is likely due to a lack of data
points. This regression equation will be of the form:

Equation 4
In(Y") =In(a) + X1 *In(B1) + {(X1 - 2) * [In(y1) - In(B1)]} * D1 + X2 * In(B2) + In(e)

Here, D1 is the dummy variable regressor and y; is its coefficient. Development years
0 to 2 will be considered the baseline category for which D1 will be assigned a value of
0 and yield Equation 3 defined above. Performing a regression with this model
results in the statistics shown in Table 3. Introducing a dummy variable to account
for the assumed discrete change in trend seems to improve the fit of the model. The
residual standard error decreased 0.2711 points to 0.3973. The F-statistic increased
markedly and its p-value is effectively zero. Examining the t-statistics for the
individual regressors reveals encouraging results as well. The standard errors of the
development year and dummy variable coefficients are relatively small and their p-
values are essentially zero. These statistics also improved for the calendar year
coefficient but not enough to suggest the model fits the data along this dimension
very well.

Table 3: R Output for Equation 4

Call:
Im(formula = In.adj.incr.paid ~ DY1 + DD1 + CY, data = df)

Residuals:
Min 1Q Median 3Q Max
-1.25226 -0.25207 0.03093 0.23365 0.90913

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.91620 0.16162 86.102 < 2e-16 ***
DY1 0.60586 0.08165 7.421 1.18e-09 ***
DD1 -0.39103 0.03486-11.216 2.23e-15 ***
CcY 0.05983 0.02526 2.369 0.0217 *

Signif. codes: 0 “*** 0.001 “** 0.01 “*' 0.05"0.1°" 1

Residual standard error: 0.3973 on 51 degrees of freedom
Multiple R-squared: 0.7253, Adjusted R-squared: 0.7091
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F-statistic: 44.89 on 3 and 51 DF, p-value: 2.434e-14

Introducing a baseline qualitative category for calendar years 0 to 4 yields the
following regression equation.

Equation 5
In(Y’) = In(a) + X1 *In(B1) + X2 * In(B2) + {(Xz - 4) * [In(y1) - In(B2)]} * D1 + In(e)

The results of this regression are shown in Table 4 do not differ much from the
regression model without dummy variables. The residual standard error decreased
0.0064 points and the p-value of the F-statistic increased 0.000589, offering slightly
less support for rejecting the omnibus null hypothesis. The baseline category appears
to impact the regression somewhat more than the unqualified calendar year variable
from Equation 3 as the p-value of the t-distribution statistic for the former is 0.07385
versus 0.165035 for the latter. However, a p-value of 0.99727 for the dummy
variable representing calendar years subsequent to period 4 suggests one would not
reject the null hypothesis of In(y1) = 0.

Table 4: R Output for Equation 5

Call:
Im(formula = In.adj.incr.paid ~ DY + CY1 + CD1, data = df)

Residuals:
Min 1Q Median 3Q Max
-1.68916 -0.41391 0.08645 0.49059 0.99436

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.2372332 0.3901035 36.496 < 2e-16 ***
DY -0.1553988 0.0420782 -3.693 0.00054 ***
CY1 0.2199073 0.1204935 1.825 0.07385.
CD1 -0.0002052 0.0596932 -0.003 0.99727

Signif. codes: 0 “*** 0.001 “** 0.01 “*' 0.05’0.1°" 1

Residual standard error: 0.662 on 51 degrees of freedom
Multiple R-squared: 0.2376, Adjusted R-squared: 0.1927
F-statistic: 5.297 on 3 and 51 DF, p-value: 0.002955

Performing another regression that bifurcates the calendar years at period 7 requires
arevised equation.

Equation 6
In(Y’) =In(a) + X1 *In(B1) + X2 * In(B2) + {(X2 - 7) * [In(y1) - In(B2)]} * D1 + In(e)
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The residual standard error and the p-value of the F-statistic in Table 5 increased
0.0124 and 0.004236 points relative to the regression statistics displayed in Table 4.
The R-squared values each decreased by approximately 0.03 points, indicating this
model describes even less of the variation in the response variable. Furthermore, the
p-values of the t-distribution tests for calendar year and dummy variable coefficients
are non-zero.

Table 5: R Output for Equation 6

Call:
Im(formula = In.adj.incr.paid ~ DY + CY2 + CD2, data = df)

Residuals:
Min 1Q Median 3Q Max
-1.63130-0.44125 0.08704 0.54323 0.98264

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.72161 0.28550 51.564 < 2e-16 ***
DY -0.15540 0.04286 -3.625 0.000666 ***
CY2 0.04811 0.05917 0.813 0.419915
CD2 0.09767 0.13857 0.705 0.484115

Signif. codes: 0 “*** 0.001 “** 0.01“*' 0.05’0.1°" 1

Residual standard error: 0.6744 on 51 degrees of freedom
Multiple R-squared: 0.2088, Adjusted R-squared: 0.1622
F-statistic: 4.486 on 3 and 51 DF, p-value: 0.007191

As before, reviewing plots of the mean residuals will offer additional insights. Figure
3 shows the mean residuals by development year, while Figures 4 and 5 plot the
mean residuals by calendar year assuming discrete changes in trend at periods 4 and
7, respectively. The line of mean residuals in these three plots would be horizontal if
the introduction of qualitative variables adequately accounted for a discrete change
in inflation across development or calendar years.
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Figure 3:

Mean of Residuals With DY Factor at 2
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Figure 5:
Mean of Residuals With CY Factor at 7
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Conclusion

The models proposed in this project sought to quantify the trends in a triangle of
incremental paid loss data. The impact of accident year trend was removed from the
data through the use of an exposure index. This adjustment eliminated a perfect
linear relationship among the explanatory variables and was represented a model
respecified to cope with multicollinearity. The remaining development and calendar
year trends formed a multiplicative model that was made additive and linear by
taking the natural logarithm of the regression equation.

The initial regression appeared to describe the development year trend well, if not
the trend along the calendar year dimension of the triangle of incremental paid loss. A
visual inspection of the mean residuals by year revealed that neither trend was
sufficiently described by the models as they were not constant across years. Dummy
variable regressors were introduced in an effort to account for discrete changes in the
trends. However, these qualified models did not adequately describe the influence of
the explanatory variables on the response variable. The annual change in trend is
clearly not discrete and the proposed models would not be useful for estimating
ultimate losses. Performing separate analyses on loss and expense using one of the
regression equations described above may lead to models that effectively quantify the
impact of the explanatory variables on the response. However, it is also possible that
a completely different model is needed to properly describe the underlying data.
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