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Introduction 

I choose forecasting premium as the aim of my time series analysis project.  More specifically, I would 

like to forecast over the next 3 years the premium for variable annuities at company ABC for the product 

XYZ.  I choose this as my project largely because I work at ABC Company within the variable annuities 

department.  Premium is always a concern and I thought it would be a fun and perhaps even beneficial 

assignment to apply what I’ve learned to actual industry results.  

 

Inspection of the Data 

As always, the first step in time series analysis is careful inspection of the time series plot.  Figure 1 

displays the historical monthly premium amounts for product XYZ.  It is difficult at this point to 

determine the stationarity of the data.  At first glance, it appears that this data is stationary.  There may 

be some seasonal movement, but again, at this point that is difficult to determine. 

 

 

 

 

Figure 1 



Figure 2 shows the qq-plot alongside the overall shape of the distribution of the data.  Ideally, I would 

like to see a normal distribution.  The data in figure 2 is somewhat normal but could use some work.   

 

  

 
Figure 2 

 

Utilizing the Box-Cox transformation, I will try to obtain a more Gaussian distribution.  Figure 3 shows 

the result of the Box-Cox transformation.  Lambda=1 is within the confidence interval (with is rather 

large!), however, I will use the maximum likelihood estimate of lambda=.3 as I further analyze this data. 

 
Figure 3 

  



Figure 4 displays the qq-plot and distribution of the Box-Cox transformed data.  It’s not too much better 

but the Gaussian curve no longer has as fat of tails. 

 
Figure 4 

I now want to check the data for stationarity.  At first glance it was very difficult to tell, but to be sure I 

will look at a few different charts.  I’ll start with the Dickey-Fuller test.  This will give a good indication of 

whether or not the data is stationary. 

 

 
 

It would appear that the Dickey-Fuller test strongly suggests a non-stationary model.  I can also use the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test in order to do the same check. 

 

 
 

This test is the opposite of the Dickey-Fuller in that the alternate hypothesis is non-stationary data.  

Again, the results show the data suggests non-stationarity.   

 

If the first two tests were not enough to convince me that the data is non-stationary I can do an ACF on 

the data and check for a slow decay of correlation.  If that is the case, again, the data can be considered 

non-stationary.  

KPSS Test for Level Stationarity 

 

data:  premium.ts^0.3 

KPSS Level = 0.5365, Truncation lag 

parameter = 1, p-value = 0.03344 

Augmented Dickey-Fuller Test 

 

data:  premium.ts^0.3 

Dickey-Fuller = -2.1902, Lag order = 3, 

p-value = 0.4979 

alternative hypothesis: stationary 



Figure 5 displays just this depiction; a slow lag over the correlations.  I can also see cause to believe 

there is seasonality here; the slow decay reasserts itself at lag 12 which is equivalent to 12 months ago.   

I will take a look at this more in depth later. 

 

 
Figure 5 

Focusing on the non-stationarity at the present moment, I will take a look at the time series plot of the 

difference in premium and then focus on the ACF and PACF charts of the same data.  This should give a 

good indication of the AR and MA levels.  Ideally I am hoping to see a stationary model by taking the 

difference between months in the time series.  Figure 6 displays this time series plot.  It is looking very 

stationary with what may appear to be some correlation, but again very difficult to tell. 

 

 
Figure 6 

 

 

 



Figures 7 and 8 give a good indication of the correlation or lack thereof for the differenced time series.  

There appears to be no significant correlation within the ACF and the PACF may have correlations up to 

lag 2, but nothing is significant.  This may mean that after taking the difference there is just white noise 

coming through the time series.  However, there is still the seasonality component as well as the 

interchange between the current difference and the values 12 months ago. 

 

 
Figure 7 

 
Figure 8 

 

  



Figure 9 shows two graphs, the top being only the seasonal difference and the bottom the First and 

Seasonal difference.  It is readily apparent that the bottom one removes any sign of seasonality and non-

stationarity.  Therefore, for the model selection process, it will be best to use differencing both in the 

current time frame and in the seasonality component. 

 

 

 
Figure 9 

 

  



 

Now I will also check the ACF and PACF of the seasonal and first difference data.  I am looking for any 

correlations to aid in my model selection of the ARIMA process.  Figure 10 displays the correlation 

graphs.  I can see that within the ACF there may be a 1 lag correlation or 3 however, these do not appear 

significant.  The partial ACF shows 2 or 3 that are all along the significance line, these should be taken 

into account when fitting the ARIMA model. 

 

 

 
Figure 10 

 

  



Model Fitting 

Having now specified a seasonal model with a general idea for the parameters, I will attempt to build a 

multiplicative seasonal ARIMA model that is both well fitting and parsimonious.  I did this by 

experimenting with several different permutations of my initial model choice.  I initially thought the 

based on the ACF and PACF the best model might be ARIMA(0,1,0)x(3,1,0).  However, after running that 

model, and checking the residuals the Lhung-Box check gave a value <.05 indicating that they were likely 

not random white noise.  I continued looking for a model that gave a low AIC score as well as provided 

residuals that gave results consistent with random white noise.  The chart below shows all the models 

attempted as well as their fit scores and Lhung-Box p-values.  I choose the model in bold.  This was for 

two reasons: while the top model showed a much lower AIC score and higher likelihood of randomized 

residuals, the residuals where not at all normally distributed and using a D equal to 2 goes against the 

parsimonious goal of the model. 

 

 
 

 

 

  

p, d, q P, D, Q Season Drift AIC AICc BIC Lhung-Box

0,1,1 2,2,0 12 N 262.3 264.11 267.48 0.2415

0,1,1 2,1,0 12 N 333.49 334.67 340.15 0.1138

0,1,0 0,1,1 12 N 333.68 334.04 337.01 0.04485

1,1,0 2,1,0 12 N 333.86 335.03 340.51 0.07341

2,1,2 2,1,2 12 N 334.16 340.36 349.13 0.03913

0,1,2 2,1,0 12 N 334.29 336.11 342.61 0.06529

0,1,0 1,1,0 12 N 334.51 334.85 337.84 0.02831

0,1,0 2,1,0 12 N 334.76 335.44 339.75 0.06355

0,1,1 3,1,0 12 N 335.13 336.95 343.45 0.08822

0,1,0 3,1,0 12 N 336.74 337.92 343.4 0.04074

0,1,2 2,1,2 12 N 337.34 340.95 348.98 0.03541

0,1,0 2,1,2 12 N 338.74 340.56 347.06 0.02489

0,1,0 0,0,1 12 Y 413.97 414.48 419.76

0,1,0 1,0,1 12 Y 415.96 416.83 423.69

0,1,0 0,0,2 12 Y 415.96 416.83 423.69

0,1,0 0,0,3 12 Y 417.47 418.8 427.13

0,1,0 0,0,1 12 N 420.13 420.38 423.99

0,1,0 1,0,1 12 N 422.12 422.63 427.92

1,0,3 1,0,3 12 N 431.8 437.16 451.31

2,1,0 2,1,0 12 N NA NA NA

1,1,1 2,1,2 12 N NA NA NA

0,1,1 3,1,1 12 N NA NA NA

0,1,0 3,1,0 12 N NA NA NA

Series: premium.ts^0.3  

ARIMA(0,1,1)(2,1,0)[12]                     

 

Coefficients: 

          ma1     sar1     sar2 

      -0.2733  -0.4605  -0.4361 

s.e.   0.1333   0.1677   0.2674 

 

sigma^2 estimated as 209.1:  log likelihood=-162.75 

AIC=333.49   AICc=334.67   BIC=340.15 



Diagnostic Checking 

To check the model selected I must first look at the residuals.  Figure 11 gives a plot of the standardized 

residuals.  There is some strange behavior towards the middle but nothing readily stands out as 

irregular.  The residuals appear to be random. 

 

 
Figure 11 

 

Looking further, I will graph the ACF of the residuals as can be seen in figure 12.  This allows me to see if 

any of the residuals are holding a correlation with one another.  Ideally, I am looking for no significant 

correlation between the residuals.  Lag 3 is showing a correlation, however, I am not surprised that one 

autocorrelation out of the 18 shows this.  This could have easily happened by chance alone.  The model 

appears to have captured the essence of the dependence within the time series. 

 

 
Figure 12 

 

  



Next I will look at the normality of the residuals.  Figure 13 displays a histogram of the error terms.  The 

shape is somewhat bell-shaped and a bit lopsided, but overall has a diffident shape of a normal 

distribution. 

 

 
Figure 13 

Figure 14 is the QQ-plot of the same data.  Again, I am looking for any reason to believe that residuals 

are not simply random white noise.  All points fall within the 95% confidence interval.  There is no 

reason to believe that these residuals are anything but random noise.  This further provides evidence 

that the model is a good representation of the dependencies within the time series. 

 

 
Figure 14 

  



Forecast 

Using the ARIMA(0,1,1)x(2,1,0)[12] model it is a simple task to forecast the results through 2017 using R 

functionality.  Figure 15 shows this forecast using premium^.3.  It is apparent that the volatility is rather 

large and therefore there is a large confidence interval.  Such is the nature of time series analysis 

especially when dealing with the data provided. 

 

 
Figure 15 

 

The problem with figure 15 is that the data is not readily usable.  Nobody cares what the premium^.3 is 

going to be.  I need to provide the premium forecast in its original format.  Figure 16 shows this forecast.  

The lower confidence interval actually bottoms out at 0 while the upper confidence interval moves quite 

high.  One can see how the seasonality is flowing through the forecast.  As time goes on the confidence 

interval continues to expand. 

 

 
Figure 16 

  



Conclusion 

The purpose of this paper was to demonstrate the model selection process of the time series analysis of 

premium for company ABC.  This selection process can be reduced to three basic and essential steps.  

The first is determining appropriate values for p, d and q.  The second is to estimate the parameters of 

the ARIMA(p,d,q) model.  Finally the third is to check the appropriateness of the model and repeating 

the steps, if necessary, to obtain an adequate model.  The three step process was utilized in my 

selection of a model and I believe that this model is a good representation of the time series plot for 

premium at company ABC. 


