Federal Spending in the U.S.

V

Paul Averill

Time Series Summer 2014

INTRODUCTION:

This project looks at the history of government spending in the United States at the Federal level. During the initial investigation I looked at data going back to 1792 and adjusted for inflation and population growth. For the purposes of building a stationary time series no single series fit the entire period, however, so the time series models investigated here are restricted to the post-WWII era.

Traditionally Government spending is considered on a percent of GDP basis as opposed to a per resident basis, but there are some possible issues with this approach: 1. Data on pre-20th century GDP is suspect whereas the decennial census going back to 1790 provides an accurate and reliable source for population data. 2., whether government spending should be expected to grow with GDP or with population is an open question. For example, historically a large (~30-80%) of Federal outlays have been on defense, and it's not clear why a larger economy would necessitate a larger, more expensive military in real terms whereas it does make sense why a growing population - which until ~1900 corresponded with a geographically growing country - would require a larger military. Similar debates could be had over other Federal government roles. Given that, spending on a per-resident basis seemed a novel way to assess how the Federal government has evolved over time and may provide new insights not captured by spending/GDP.

DATA COLLECTION:

Population and Federal outlays data for the period 1792-1899 was sourced from "Historical Statistics of the United States 1789-1945", pages 26 and 299-301, respectfully, which can be found on the Census Bureau's website:

http://www2.census.gov/prod2/statcomp/documents/HistoricalStatisticsoftheUnitedStates1789-1945.pdf

Population data post 1900 was obtained here: http://www.census.gov/popest/data/historical/index.html

Post 1900 Federal outlay data was obtained here: http://www.whitehouse.gov/omb/budget/historicals

CPI data was sourced from <u>www.measuringworth.com</u>, a collaborative effort between a number of economists from recognized institutions. They have compiled a number of inflation time series that date back further than what is available from the BLS or Federal Reserve.

DATA ASSESSMENT¹:

Looking at inflation adjusted Federal outlays (Figure 1) and inflation adjusted outlays/resident (Figure II) the data exhibits a clear pattern of exponential growth with increased volatility around the Civil War, WWI, WWII, and the recent financial crisis.

Figure	П·
riguit	11.

¹ See Excel sheet "Data"

Clearly neither of these series is stationary, in general, though, exponential growth can be made stationary by taking logs and first differences, shown in Figures III and IV. If spending per resident is indeed growing exponentially a linear trend is expected in Figure III and a series in Figure IV with stationary mean, which appears reasonable.

Given that the per-resident series in Figures II and III are showing an obvious upward growth - a far larger and sustained deviation from the mean than would be expected from any stationary series - it's immediately clear real Federal outlays per resident have not been stationary over time².

² This was confirmed by looking at the sample ACF, see Excel sheet "Sample Correlogram-LN"

Looking at Figures I, II, III, and IV, and combining them with general knowledge of American History the data breaks down into four well defined eras with distinct characteristics: The Founding through the Civil War, characterized by very low levels of spending with little growth per resident (<1%/year) and large year-to-year volatility; Post Civil-War through WWI, with higher spending per resident but still little growth (<1%/year) and lower volatility; WWI through WWI, characterized by very high volatility and rapidly growing spending per resident ($\sim7.5\%$); and Post-WWII, characterized by a steady growth rate of Federal spending per resident and much lower volatility ($\sim2.5\%$).

Given the evolution of the data: varying growth rates during different periods, changing volatility, and the dramatic effects of two World Wars and the Civil War, it's unreasonable to expect any single model to fit with any degree of precision, therefore, the remainder of the study will focus only on the Post-WWII period. The start of this period will be 1950 after war efforts had ramped down and spending stabilized.

MODEL SPECIFICATION:

This study looks at two possible models for the data. The first is a simple mean plus white noise model of first differences of the logs:

1: $\nabla \ln(Y_t) = \mu + X_t$ Where: $Y_t =$ Federal outlays per resident $\mu =$ Mean growth rate $X_t =$ White noise process of 0 mean and constant variance

The second model uses a more sophisticated approach while keeping parsimony in mind. This model regresses spending on population, which is itself a linear regression³, where the residuals are modeled as an AR(1) process:

 $2: Y_t = \mu_t + \varphi * r_{t-1} + \varepsilon_t$

Where: $Y_t = \text{Total Federal outlays}$ $\mu_t = \text{Linear estimate of outlays at } t; \beta_0 + \beta_1 * Pop_t$

³ The reason the population regression was required rather than just using the actual data is for forecasting. In order to generate an estimate of future Federal outlays that depends on population or outlays per resident an estimate of future population is needed. Given population tends to grow exponentially a linear regression isn't optimal, however, over the given time frame a linear approximation is sufficiently accurate (the population on year regression has an $R^2=0.995$). The extra noise introduced by the population regression is dwarfed by the volatility in outlays.

 $Pop_{t} = \text{Linear estimate of population at } t; \ \xi_{0} + \xi_{1} * t$ $r_{t} = Y_{t} - (\beta_{0} + \beta_{1} * Pop_{t})$ $\varepsilon_{t} = S \text{tochastic component}$

Which gives:
$$Y_t = \beta_0 + \beta_1 (\xi_0 + \xi_1 * t) + \varphi (Y_{t-1} - (\beta_0 + \beta_1 * Pop_{t-1}))$$

= $(1 - \varphi) (\beta_0 + \beta_1 \xi_0 + \beta_1 \xi_1 * t) + \varphi \beta_1 \xi_1 + \varphi * Y_{t-1}$

MODEL 1 PARAMETERS⁴:

With Model 1 as: $\nabla \ln(Y_t) = \mu + X_t$

The following were generated: $\mu = 0.0242$ $\sigma_{\varepsilon}^{2} = 0.0035$

Figure V shows the sample ACF of $\nabla \ln(Y_t)$ and with no values beyond the significance bounds for a white noise process $(0 \pm 1.96\sqrt{1/n})$ there is no evidence to reject this model.

⁴ See Excel sheets "Sample ACF-Diff_LN" and "Model 1"

$$ACF:$$

$$r_{k} = \frac{\sum_{t=k+1}^{n} (Y_{t} - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y})^{2}}$$

$$UCL / LCL = 0 \pm 1.96 \sqrt{\frac{1}{n}}$$

MODEL 1 FORECASTS:

Based on the above model forecasts are generated for Federal spending per resident for 2009-2013 and the results compared to actual data. All years fall within the 95% bounds except 2013 which is below by < \$200.

 $\nabla \ln(Y_t) = 0.0242 + X_t$ $\Rightarrow Y_t = Y_{t-1}e^{0.0242 + X_t}$ Where $X_t \sim N(0, 0.0035)$

 $\hat{Y}_{t}(\ell) = Y_{t}e^{0.0242*\ell}$ $UCL / LCL = Y_{2008}e^{0.0242*\ell \pm 1.96*\sqrt{0.0035}}$

MODEL 1 DIAGNOSTICS:

To assess the accuracy of the model the first checks are the residual ACF and qq-plot. Looking at Figure VII there doesn't appear to be any reason to question the model with all lags within the white-noise bounds.

Turning to the qq-plot in Figure VIII, the slope is slightly below what would be expected for a normal distribution, however, correcting for the 5.6σ outlier at t=1952 this is eliminated and the residuals closely follow a normal plot, seen in Figure IX.

⁵ See Excel Sheets "Mod 1 Resids ACF" and "Model 1"

As a final check of the residuals the Ljung-Box test is performed to ensure the total spread of residuals is within expected bounds, and as Table I shows all lags fall within the 95% confidence bound.

rable 1:					
k=Lag	Ljung-Box Q*	P-value	Reject at 95%		
1	0.3537	0.5520	No		
2	4.9819	0.0828	No		
3	5.8952	0.1168	No		
4	5.9073	0.2062	No		
5	6.2861	0.2794	No		
6	6.2995	0.3905	No		
7	6.4562	0.4876	No		
8	6.6080	0.5795	No		
9	7.8774	0.5465	No		
10	8.3415	0.5955	No		
11	8.5906	0.6596	No		
12	10.2119	0.5974	No		
13	11.0378	0.6077	No		
14	14.0291	0.4475	No		
15	15.8987	0.3888	No		
16	16.1661	0.4414	No		
17	17.1405	0.4449	No		
18	17.2056	0.5090	No		
19	17.4519	0.5593	No		
20	17.4838	0.6214	No		
21	19.9056	0.5273	No		
22	20.1317	0.5748	No		
23	23.3779	0.4389	No		
24	23.4600	0.4928	No		
25	23.5993	0.5426	No		
26	23.6140	0.5980	No		
27	24.1000	0.6248	No		
28	24.1001	0.6762	No		
29	24.2483	0.7166	No		
30	24.2501	0.7606	No		
31	24.2501	0.8002	No		
32	24.5023	0.8257	No		
33	25.4047	0.8249	No		
34	25.8453	0.8410	No		
35	26.9640	0.8326	No		

Table I:

$$Q^* = n^* (n+2) \left(\frac{\hat{r}_1}{n-1} + \frac{\hat{r}_2}{n-2} + \dots + \frac{\hat{r}_k}{n-k} \right)$$

P-value = 1- $\chi^2 (Q^*, df = k)$

MODEL 2 PARAMETERS:

With Model 2 specified as: $Y_t = \mu_t + \varphi * r_{t-1} + \varepsilon_t$

Where:

 $Y_{t} = \text{Federal outlays}$ $\mu_{t} = \text{Linear estimate of outlays at } t; \beta_{0} + \beta_{1} * Pop_{t}$ $Pop_{t} = \text{Linear estimate of population at } t; \xi_{0} + \xi_{1} * t$ $r_{t} = Y_{t} - (\beta_{0} + \beta_{1} * Pop_{t})$

The following values were generated:

$\beta_0 = -2473879.10$	$\hat{\varphi} = 0.8886$
$S.E_{\beta_0} = 70035.02$	$S.E_{\hat{\varphi}} = 0.0777$
$\beta_1 = 18220.74$	Intercept = 0.0263
$S.E_{\beta_1} = 304.36$	$S.E_{Inter} = 0.0728$
$R^2 = 0.9843$	$R^2 = 0.7000$

$$\begin{split} \xi_0 &= -4710.66\\ S.E_{\xi_0} &= 44.2012\\ \xi_1 &= 2.49\\ S.E_{\xi_1} &= 0.0223\\ R^2 &= 0.9955 \end{split}$$

 $\hat{\sigma}_{\varepsilon} = 49129.74$

The intercept of the φ regression is expected to be 0 and with an intercept of 0.0263 and S.E. of 0.0728 we do not reject H₀ where H₀: Intercept=0 at α =0.05. It is also of note r_1 =0.7786, the method of moments estimator of φ , is within 1.96 standard errors (0.0777) of $\hat{\varphi}$, the least squares estimator.⁶

⁶ See Excel sheets "Population Regression", "Out vs Pop Regress", "Samp ACF-PACF Out vs Pop", "Out vs Pop ACF Output", "Phi_Hat Regression", "LS Est", "Model 2"

With R^2 of 0.9843 and 0.9955 both the population and outlays regressions are close fits to the observed data - See Figures X and XI.

Next the time and *t* vs *t*-*1* plots and the sample ACF and PACF of the outlays regression residuals are assessed to determine if there is an identifiable pattern - See Figures XII, XIII, XIV, and XV respectively.

Figure XIV:

Figure XV:

Looking at Figures XII and XIII it appears there is a strong correlation among neighboring values, with Figure XII in particular showing a strong resemblance to an AR(1) model with high φ . Looking at the ACF the first three lags fall within the significance bounds for an AR(1) model and the exponential decay is consistent with an AR(1) model, although the negative values at lags at 6-20 indicate the possibility of an AR(2) model.

Turning to the PACF⁷, there is a very strong indication of an AR(1) model where only the first lag falls outside the significance bounds with all others well inside. Due to the strength of the AR(1) seen in the PACF and the fact that none of the negative values in the ACF fall outside the significance bounds the AR(2) model is abandoned. The added complexity would likely outweigh any possible gains in precision and could add unnecessary noise. The ACF, PACF, and significance bounds were generated using the following functions - Note the UCL/LCL bounds are those expected of an AR(1) process with $\varphi = \hat{\varphi}$:

$$ACF:$$

$$r_{k} = \frac{\sum_{t=k+1}^{n} (Y_{t} - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y})^{2}}$$

$$UCL / LCL = 0 \pm 1.96 \sqrt{\frac{1}{n} \frac{(1 + \varphi^{2})(1 - \varphi^{2k})}{1 - \varphi^{2}} - 2k\varphi^{2k}}$$

$$PACF:$$

$$\varphi_{kk} = \frac{\rho_{k} - \sum_{j=1}^{k-1} \varphi_{k-1,j} \rho_{k-j}}{1 - \sum_{j=1}^{k-1} \varphi_{k-1,j} \rho_{j}}$$

$$UCL / LCL = 0 \pm 1.96 \sqrt{\frac{1}{n}}$$

MODEL 2 FORECASTS:

From the parameters outlined above the modeled values in Table 2 were generated - The first three columns are actual data and the final four columns the modeled data. Forecasts for 2009-2013 are graphed in Figures XIV-XV.

The forecasts in Figure XV are 1, 2, 3, 4, and 5 year forecasts based on the last known residual from 2008. Given the large deviation in 2009 due to the financial crises the 2009 actual is well outside the 95% bounds (The 2009 residual was an 11σ event). The forecasts in Figure XVI are a

⁷ PACF values were calculated using the PACF() function in R with max lag set to 35, the output was then exported back to Excel.

series of 1 year forecasts updated by the actual residual in t-I. As shown by the charts a model incorporating the auto-regression inherent in the residuals improves significantly on the naïve regression, although as 2009 demonstrates caution is needed, especially when forecasting for more than 1 year.

	Population			Outlays* _t =β₀+β₁*	Outlays _t -	Outlays' _t =β₀+β₁*
Year	(mn)	Outlays _t	Pop _t =ξ₀+ξ₁*t	Popt	Outlays*t (rest)	Pop _t +φ*res _{t-1}
1950	152	411,763	154	328,556	83,207	
1951	155	408,119	156	374,009	34,110	447,943
1952	158	593,903	159	419,463	174,440	449,771
1953	160	662,747	161	464,916	197,831	619,916
1954	163	614,077	164	510,370	103,707	686,154
1955	166	595,396	166	555,823	39,573	647,973
1956	169	605,456	169	601,276	4,180	636,440
1957	172	633,734	171	646,730	-12,996	650,444
1958	175	003,799	174	092,183	-28,384	080,030
1959	1/0	735,773	170	782,000	-1,003	712,410
1900	184	760 881	179	828 543	-56,012	761,434
1962	187	822 373	18/	873 007	-07,003	813 875
1963	189	846 903	186	919 450	-72 547	873 580
1964	100	889 858	189	964 903	-75 046	900 441
1965	194	872 699	191	1 010 357	-137 657	943 674
1966	197	965,514	194	1.055.810	-90.297	933,494
1967	199	1,098,288	196	1,101,264	-2,976	1,021,030
1968	201	1,192,474	199	1,146,717	45,757	1,144,073
1969	203	1,166,642	201	1,192,170	-25,528	1,232,828
1970	205	1,173,491	204	1,237,624	-64,133	1,214,941
1971	208	1,208,632	206	1,283,077	-74,446	1,226,092
1972	210	1,284,097	209	1,328,531	-44,434	1,262,382
1973	212	1,287,737	211	1,373,984	-86,247	1,334,502
1974	214	1,272,043	214	1,419,437	-147,395	1,342,802
1975	216	1,437,966	216	1,464,891	-26,925	1,333,922
1976	218	1,521,122	219	1,510,344	10,777	1,486,420
1977	220	1,572,866	221	1,555,798	17,069	1,565,374
1978	223	1,638,600	224	1,601,251	37,349	1,616,417
1979	225	1,618,001	226	1,646,704	-28,703	1,679,891
1980	227	1,071,105	229	1,092,158	-21,053	1,000,004
1981	229	1,737,634	231	1,737,011	17 000	1,718,904
1902	232	1,000,293	234	1,703,003	62 210	1,703,004
1987	234	1,090,720	230	1,020,010	35 908	1,043,027
1985	238	2 048 888	200	1 919 425	129 463	1 951 331
1986	240	2,105,104	244	1,964,878	140,226	2.079.913
1987	242	2.058.942	246	2.010.332	48.610	2.134.930
1988	244	2.096.081	249	2.055.785	40.296	2.098.978
1989	247	2,148,763	251	2,101,238	47,525	2,137,043
1990	249	2,233,340	254	2,146,692	86,648	2,188,920
1991	252	2,264,990	256	2,192,145	72,845	2,269,137
1992	255	2,293,949	259	2,237,598	56,350	2,302,326
1993	258	2,272,184	261	2,283,052	-10,868	2,333,122
1994	260	2,297,773	264	2,328,505	-30,732	2,318,848
1995	263	2,316,977	266	2,373,959	-56,982	2,346,651
1996	265	2,316,956	269	2,419,412	-102,456	2,368,780
1997	268	2,323,963	271	2,464,865	-140,903	2,373,827
1998	270	2,361,697	274	2,510,319	-148,622	2,385,119
1999	273	2,379,719	276	2,555,772	-176,054	2,423,713
2000	202	2,420,173	279	2,001,220	-101,053	2,444,792
2001	200 200	2,430,410	201	2,040,079	-190,203	2,400,004
2002	200	2,003,990	204	2,092,132	-00,142	2,517,741
2004	293	2,827,635	289	2 783 039	44 596	2 780 404
2005	296	2,948,628	291	2 828 493	120,136	2 868 118
2006	298	3,068,058	294	2.873.946	194,112	2,980,693
2007	301	3,065.857	296	2.919.399	146.457	3.091.879
2008	304	3,227,187	298	2.964.853	262,335	3,094.988

Table 2:

Figure XVI:

Figure XVI:

$$\hat{Y}_{t}(1) = (1 - \varphi)(\beta_{0} + \beta_{1}\xi_{0} + \beta_{1}\xi_{1} * t) + \varphi\beta_{1}\xi_{1} + \varphi * Y_{t-1}$$

MODEL 2 DIAGNOSTICS⁸:

As with Model 1, if the model is a correct fit for this data it is expected the residuals are normally distributed with mean 0. To check this a simple time plot, qq-plot, and Barletts test using AR(1) bounds were performed - See Figures XVII, XVIII, and XIX, respectively.

Figure XVIII:

⁸ See Excel sheet "Mod 2 Resids ACF", "Mod 2 Resids ACF Output"

$$UCL / LCL = 0 \pm 1.96 \sqrt{\frac{1}{n} \left(1 - \left(1 - \hat{\varphi}^2\right) \hat{\varphi}^{2k-2}\right)}$$

Only the lag 12 value of the \hat{r}_k ACF is significant and falls outside the significance bounds by a small margin. As expected, comparing Figure XIX to Figure XIV much less autocorrelation is evident. These observations combined with a qq-plot that fairly closely tracks normality indicates the residuals are independent and normally distributed, thus based on the evidence from these tests the model is efficiently specified.

Next the standard deviation of the observed residuals is compared against the method of moments estimator, $\hat{\sigma}_{\varepsilon}$:

$$\hat{\gamma}_{0} = \frac{\hat{\sigma}_{\varepsilon}^{2}}{1 - \hat{\varphi}^{2}}$$

$$s = \sqrt{\frac{1}{n - 1} \sum_{t=1}^{n} (res_{t} - \overline{res})^{2}} = 98455.72$$

$$\Rightarrow \hat{\sigma}_{\varepsilon}^{2} = 98455.72^{2} (1 - 0.8666^{2}) = 2413731710.65$$

$$\Rightarrow \hat{\sigma}_{\varepsilon} = 49129.74$$

 $\hat{e}_t = 54056.46$

The observed value closely matches the expected value.

Lastly the Ljung-Box test is performed and with no p-values falling below the 5% significance level there is not sufficient evidence to indicate the residuals are anything other than white noise.

Table 3:					
lent en	Ljung-Box Q*		Deirect at 05%		
K=Lag	Ljung-Box Q [*]	P-value	Reject at 95%		
1	1.5761	0.0000			
2	1.5926	0.2069	NO		
3	1.9005	0.3866	NO		
4	1.9856	0.5754	NO		
5	2.5376	0.6379	NO		
6	2.7494	0.7385	NO		
/	3.8576	0.6959	NO		
8	3.9359	0.7871	NO		
9	3.9615	0.8606	NO		
10	4.0383	0.9089	NO		
11	7.6331	0.6646	NO		
12	14.1196	0.2264	NO		
13	14.8870	0.2477	NO		
14	16.1522	0.2410	NO		
15	16.1662	0.3033	NO		
10	16.2895	0.3631	NO		
1/	16.4222	0.4239	NO		
18	16.4974	0.4889	NO		
19	16.9627	0.5257	NO		
20	10.9701	0.3913	No		
21	20.3365	0.4557	No		
22	20.4142	0.4952	No		
23	20.1140	0.2408	No		
24	20.1002	0.2934	No		
25	26 1651	0.3988	No		
20	26.1031	0.5500	No		
27	26 6995	0.4500	No		
20	27 6304	0.4842	No		
30	27.9915	0.5184	No		
31	28.0406	0.5683	No		
32	28.3666	0.6022	No		
33	31.7569	0.4788	No		
34	32.8249	0.4758	No		
35	34.0208	0.4667	No		

$$Q^* = n^* (n+2) \left(\frac{\hat{r}_1}{n-1} + \frac{\hat{r}_2}{n-2} + \dots + \frac{\hat{r}_k}{n-k} \right)$$

P-value = 1 - $\chi^2 (Q^*, df = k-1)$

CONCLUSION:

Comparing the modeled data in Figure VI with Figure XX (which is Figure XVI on a perresident basis) it's evident Model 2 more closely tracks actual spending. While the actual 2009 value fell within the 95% bounds in Model 1, whereas it did not in Model 2, this is largely due to the fact that the significance bounds are much wider for Model 1 (\$2624 vs \$691) not that the actual projection was notably more accurate. Furthermore, looking at actual outlays for 2013 being outside the significance bounds with the trend looking further downward it appears there is cause to doubt the accuracy of Model 1 in the future. In contrast the AR component in Model 2 should capture the downward trend.

Even with the more accurate and sophisticated approach in Model 2 updates will definitely be necessary going forward, though. Just as in the past, wars, demographics, and the role of government will continue to evolve and thus no single model is appropriate forever.