TS Module 4: Variance of mean homework assignment
(The attached PDF file has better formatting.)
Homework assignment: Variance of mean
An $M A(2)$ process $Y_{t}=e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}$ has N observations, with $\sigma^{2}{ }_{e}=1,-1 \leq \theta_{1} \leq+1,-1 \leq \theta_{2} \leq+1$.
A. What values of θ_{1} and θ_{2} maximize the variance of \bar{y}, the average of the Y values?
B. What values of θ_{1} and θ_{2} minimizes the variance of \bar{y}, the average of the Y values?

Your answer should give a line of values for each part, such as $\theta_{1}+\theta_{2}=k$.
Jacob: How should we reason through this homework assignment?
Rachel: Write the value of \bar{y} in terms of the ϵ 's: $\sum y_{j}=\epsilon_{n}+\left(1-\theta_{1}\right) \epsilon_{n-1}+\left(1-\theta_{1}-\theta_{2}\right) \epsilon_{n-2}+\ldots$
Most of the terms have $\left(1-\theta_{1}-\theta_{2}\right) \epsilon_{\mathrm{n}-2}$; only the two terms at the beginning and the two terms at the end have fewer θ 's. Ignore these beginning and end terms (assuming n is large).

All the ϵ 's are independent. We choose θ_{1} and θ_{2} to maximize or minimize $\left(1-\theta_{1}-\theta_{2}\right) \epsilon_{\mathrm{n}-2}$, which is easy.
For the homework assignment, ignoring the end terms is fine. If N is small, the answer differs slightly, and the calculations are messy.

