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Introduction 
 
The 10-Yr Treasury bond is an important lending benchmark and measure of economic conditions.   A 

Treasury is a portion of government debt that is sold on the market.  Various factors can affect the price 

of a Treasury (which is inversely related to the yield).  For example, a government with poor 

creditworthiness will have lower priced treasuries.  Periods of high inflation or economic growth are 

correlated with higher Treasury yields as investors are more likely to invest in securities that can 

potentially provide a greater rate of return.  The 10-yr Treasury is also a benchmark for mortgage 

lending rates. 

 
Following is a search for a pattern in the monthly average yield of the 10-year Treasury from 1974 

through 2014.  Data was obtained through the US Department of the Treasury’s website. 

 
Exploration of the Data 
Surely there are some complex predictors and dependencies that underlie the 10-yr Treasury yield 

stochastic process seen in figure 1A.  An ideal model might include variables for seasonal patterns as 

well as regression parameters for various events that have an effect on the yield.  However, for the 

illustration of the methods learned in this course, I am going to stick to a stationary time series model.   

 

A stationary time series model, however, should not be used on a process that does not appear to be 

stationary.  A stationary process is one where “the probability laws that govern its behavior do not 

change over time” (Cryer & Chan, 2008).  From the history of Treasury yields pictured in 1a, it appears 

that the process that governed the yields between the mid 70’s and mid 80’s was different from the 

process that has governed yields since 2010.  Additionally, there appears to be a descending trend with 

time.  Differencing the monthly values results in a more stationary time series (figure 1b), but it appears 

that when the prices were higher, the monthly differences were greater.  The taking the log of the time 

series (figure 1c) results in a process that is more stable than the original series between 1980 and 2000, 

when prices were higher, but less stable since because of the log operator’s increased sensitivity to 

numbers close to 0.  Also the series, like that in 1a has a descending trend.   

The differenced log transformation (figure 1d) of the Treasury yield was used for analysis because it 

appears the most stationary of them all.  There does however, appear to be a number of extreme values 

following the “financial meltdown” of 2008.  Since then, the oscillations in the plot have been larger 

than at any other time.  This is likely partly due to the sensitivity of the log function at numbers closer to 



0, which is where the Treasury yield has been these last few years.  For this reason, we will explore the 

effect of removing post-2008 data from the model building process. 

 
Searching for an Appropriate Model 
 
The plots of the autocorrelation functions (figures 2A and 2C) indicate that the ARIMA series has a highly 

significant positive first-order moving-average parameter and possibly a negative second-order 

parameter.  It should also be noted that an increase in the values of the ACF is seen at a lag of 

approximately 12 months, indicating a possible yearly seasonal moving average pattern.    

The PACF plots (figures 2B and 2D) also indicate a highly significant positive first-order autoregressive 

parameter, a highly significant negative second-order auto-regressive parameter, and possibly a positive 

third-order auto-regressive parameter.  As with in ACF plots, we see evidence of possible yearly 

seasonality with a spike in the PACF values at 12 months.  The spike at around month 12 in figure 2D 

indicates that there is a possible negative correlation of the Treasury yield in a given month year-over-

year.  Because the autocorrelations and partial-autocorrelations taper off more rapidly when the post-

2008 data is omitted, pre-2008 data will be used for all subsequent analyses.  It is possible that a 

separate model should be used for data following 2008.   
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Because a mixed AR/MA model’s ACF and PACF plots can “theoretically have many non-zero values” 

(Cryer & Chan, 2008), observing an EACF plot can be illustrative.  An EACF plot separates the 

autoregressive portion of the series from the moving average portion by assuming a kth order 

autoregressive model and marking an “X” where the jth order autocorrelation is significantly greater than 

zero (as in figure 3).  The ACF plot of a theoretical j-order moving-average model has significant 

autocorrelations up to lag j and autocorrelations near 0 for lags greater than j.  Generally the 0’s form a 

triangular pattern, from which the uppermost, left most value is commonly chosen for the sake of 

parsimony.  The sample EACF plot in figure 3 has a somewhat triangular pattern.  Based on the ACF and 

PACF plots, I am inclined to choose a ARIMA(1,1,2) model for the log-differenced yields.  The EACF plot, 

however, is not very effective for spotting seasonal parameters. 
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Figure 3: The EACF of the log-differenced Treasury yields from 1974 to 2008. 



According to the textbook, the Bayesian Information Criterion (BIC) is a consistent estimator of the order 

of ARMA(p,q) models.  This means that as sample size increases, so does the probability that the lowest 

BIC values correspond to models similar to the true underlying process, given that an underlying ARMA 

process is present.  If the process is not truly an ARIMA process, or not a pure ARIMA process (as is likely 

true with the Treasury yield data), the BIC is still useful in selecting a model that explains much of the 

variation in the data.   

Figure 4 contains a ranking of BIC values (lower = better fitting model) among models with up to 13 AR 

and 13 MA parameters.  Interestingly, the best models contain a lag-12 autoregressive parameter and a 

lag 11 moving average parameter.    

 

 

Because a lag 11 parameter does not really make sense for this data, another ranking of BIC parameters 

was generated for models containing up to 13 AR parameters and 6 MA parameters (figure 5).  Here we 

see that the two best fitting models in terms of BIC have a second-order auto-regressive parameter and 

a first-order moving average parameter.  The third best model (not much worse-fitting than the two 

best models) includes a year-over-year seasonal autoregressive parameter and first and second-order 

moving average parameters.   

Figure 4: BIC Values for Various ARIMA subsets for fitting 

the log-differenced yield data from 1974 to 2008. 



 

 

Parameter Estimation for the Top Models 
 
Since all the top models in terms of BIC contain a first-order MA parameter and a majority of the top 
models contain a seasonal autoregressive parameter models including such parameters were fit.   Recall 
that the inclusion of a seasonal AR parameter and lower-order MA parameters was also supported by 
the ACF and PACF plots.   
 
Three models were fit (table 1).  Model 1 is a ARIMA (0,1,2)x(1,1,0)12 model.  It includes first and second 
order moving average parameters and a 12-month seasonal autoregressive parameter.  The first order 
moving average parameter indicates a positive autocorrelation at lag 1 and a negative, and weaker, 
autocorrelation at lag 2.  The most significant parameter is the negative seasonal autoregressive 
parameter, which suggests a moderately strong negative relationship of the log of first differences of 
Treasury yields from one year to the next.  This corresponds to the significant negative value seen at lag 
12 in the PACF plot. 
 
The large standard error relative to the parameter estimate for the second order moving average 
parameter suggests that the true value of the parameter may be close to zero, if not zero.  We see in 
model 2 that the removal of the second order moving average parameter has a small effect on the 
estimate of the first order moving average parameter.  This model also has the lowest AIC of the three 
(1296 vs 1300 for model 1 and 1299 for model 3).  For these reasons, the model was selected over 
model 1 as the best model for the log-differenced Treasury yields. 
 

Figure 5: BIC Values for Various ARIMA subsets for fitting the log-differenced yield 

data from 1974 to 2008 (limited to 13 AR and 6 MA parameters). 



A third model was fit, which included a first-order autoregressive parameter.  Contrary to the PACF plot 

the parameter is negative.  The addition of the parameter also has a large effect on the value of the 

moving average parameter, which I suspect is due to a high correlation of the parameters with one 

another.  For these reasons, model 3 was rejected. 

Table 1:   Three Fitted ARIMA Seasonal Models 

Model 1: ARIMA 
(0,1,2)x(1,1,0)12 θ_1 θ_2 φ_1 Φ 

estimate 0.376 -0.125 x -0.561 

s.e. 0.050 0.049 x 0.041 

Model 2: ARIMA 
(0,1,1)x(1,1,0)12 θ_1 θ_2 φ_1 Φ 

estimate 0.439 x x -0.557 

s.e. 0.051 x x 0.041 

Model 3: ARIMA 
(1,1,1)x(1,1,0)12 θ_1 θ_2 φ_1 Φ 

estimate 0.616 x -0.227 -0.560 

s.e. 0.078 x 0.098 0.041 

 
Residual Analysis 
 
A Q-Q plot of the selected model’s residuals (figure 6) indicates that there are more extreme error 

values than would be expected under normality.   While it is certainly possible that the residuals do not 

follow a normal distribution, it is also possible that a better fitting model may reduce the number of 

extreme residuals.   

 
 Figure 6: QQ Plot of residuals for selected model. 



 

 

The PACF and ACF plots (figure 7) of the residuals for model 2 do not provide sufficient evidence to 

suggest any other autoregressive or moving average parameters should be added to the model.  While 

there is a spike at lag 21, one would be hard pressed to come up with a justification for adding a lag 21 

autoregressive or moving average parameter to the model.  It is also the only spike outside of the 

confidence bounds, which do not make any adjustment for sample size. 

 

 

 

Conclusion 
 
The best purely ARIMA model that could be fit was a (0,1,1)x(1,1,0)12 seasonal ARIMA model following 

differencing  and a log-transformation.   This model was fit merely as an exercise in ARIMA modeling.  A 

better model for the data would likely include regression parameters that capture factors that directly 

or indirectly affect the yield on the 10-yr Treasury bond.  ARIMA modeling like that done in this paper 

can be a useful tool for generating quick, ad hoc analyses/searches for patterns when an extensive 

search for predictors may not feasible. 

 

 

 

Figure 7: ACF and PACF plots of residuals for the selected model. 
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Appendix 

 
#READING IN THE DATA 
dat = read.csv('FinalProj.csv') 
int=dat[1:488, ] 
 
save(int, file="int.rdata") 
load("int.rdata") 
 
int$DATE=as.Date(int$DATE,"%m/%d/%Y") 
 
##EXPLORING THE DATA 
#PLOTS OF TRANSFORMATIONS FOR STATIONARITY 
dev.new() 
par(mfrow = c(2, 2)) 
par(mar=c(4,2,2,1)) 
plot(VALUE~DATE,data=int,type="l",xlab="Time",  
ylab="Monthly Avg. Interest Rate",main="10-yr Treasury Yields 1974 to Present" ) 
plot(diff(VALUE)~DATE[1:(length(DATE)-1)],data=int,type="l",xlab="Time",  
ylab="Monthly Avg. Interest Rate",main="Difference of 10-yr Treasury Yields 1974 to Present" ) 
plot(log(VALUE)~DATE,data=int,type="l",xlab="Time",  
ylab="Monthly Avg. Interest Rate",main="Log of 10-yr Treasury Yields 1974 to Present" ) 
plot(diff(log(VALUE))~DATE[1:(length(DATE)-1)],data=int,type="l",xlab="Time",  
ylab="Monthly Avg. Interest Rate",main="Difference of Log of 10-yr Treasury Yields 1974 to Present" ) 
 
##SEARCHING FOR AN APPROPRIATE MODEL 
#ACF AND PACF PLOTS 
dev.new() 
par(mfrow = c(2, 2)) 
par(mar=c(4,4,4,1)) 
acf(diff(log(int$VALUE)), ci.type= 'ma', plot=TRUE, main = 'ACF of Log-Differenced Yields 1974 to 
Present') 
pacf(diff(log(int$VALUE)), plot=TRUE, main = 'PACF of Log-Differenced Yields 1974 to Present') 
acf(diff(log(int$VALUE[1:410])), ci.type= 'ma',  plot=TRUE, main = 'ACF of Log-Differenced Yields 1974 to 
2008') 
pacf(diff(log(int$VALUE[1:410])), plot=TRUE, main = 'PACF of Log-Differenced Yields 1974 to 2008') 
 
#EACF PLOT 
eacf(diff(log(int$VALUE[1:410])),ar.max=13,ma.max=13) 
 
#BIC PLOTS 
dev.new() 
res=armasubsets(y=diff(log(int$VALUE[1:410])),nar=13,nma=13,y.name='test',ar.method='ols') 
plot(res) 
dev.new() 
res=armasubsets(y=diff(log(int$VALUE[1:410])),nar=13,nma=6,y.name='test',ar.method='ols') 
plot(res) 



 
#PARAMETER ESTIMATION 
arima(log(int$VALUE[1:410]),order=c(0,1,2),seasonal=list(order=c(1,1,0),period=12)) 
arima(log(int$VALUE[1:410]),order=c(0,1,1),seasonal=list(order=c(1,1,0),period=12)) 
arima(log(int$VALUE[1:410]),order=c(1,1,1),seasonal=list(order=c(1,1,0),period=12)) 
 
#RESIDUAL ANALYSIS 
dev.new() 
model=arima(log(int$VALUE[1:410]),order=c(0,1,1),seasonal=list(order=c(1,0,0),period=12)) 
qqnorm(residuals(model),main='QQ Plot of Redisuals for ARIMA (0,1,1)x(1,1,0)_12 Model') 
qqline(residuals(model)) 
 
dev.new() 
par(mfrow = c(1, 2)) 
par(mar=c(4,4,4,1)) 
pacf(residuals(model), ci.type='ma',main = 'PACF of Residuals for Selected Model') 
acf(residuals(model),ci.type='ma', main = 'ACF of Residuals for Selected Model') 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


