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Daily Temperature in Milan, Italy
Introduction
The city of Milan, Italy is the main industrial, commercial, and financial center of Italy and is known for fashion and design. It is located on the 46 degree parallel just off of the Mediterranean Sea. Milan's climate consists of moderately hot summers and cold humid winters. This project studies the average daily temperatures of Milan, Italy and attempts to fit an ARIMA model to the data. 

Data 

Data was obtained from the University of Dayton daily temperature archive.  The database used in this project contained average daily temperatures for the period of January 1, 1995 to September 30, 2014.  However, all of the analysis performed used only data for the complete years of 1995 through 2013.  The data used in the analysis contained a total of 6,925 data points. 
The following is a graph of the data:
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The graph above shows a strong seasonal pattern.  Weather is generally cyclically so this was expected. Due to this seasonality, we will seasonally adjust our data before examining the autocorrelation function.
Seasonal Adjustment 
First, I smoothed the data.  I used a multi-year centered moving average. We averaged the daily temperature over 365 days – a 5 year average of the date and the three preceding and the three following days. For example, the smoothed temperature on January 4 is the average of the temperatures on January 1 – January 7 for 1995-1999.  
Below is a graph of the smoothed daily temperature:
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Next, I computed the seasonal index for each day by dividing the smoothed temperature for that day by the overall average for the data set (54.3).  We then computed the seasonally adjusted temperature for each day by dividing that day’s temperature by the corresponding seasonal index. 
This process removes the seasonal variations and “flattens” the data curve.  The effect can be seen by looking at one year of data; compare the raw data with the seasonally adjusted data for 1995 below. 
[image: image3.emf]0

10

20

30

40

50

60

70

80

90

1

163146617691

106121136151166181196211226241256271286301316331346361

Actual Daily Temperature 1995
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Seasonally Adjusted Daily Temperature 1995


Sample Autocorrelation Function
Now that we removed seasonality from our data, we are ready to analyze it and model it.  We will model the temperature in 1995 - 1999 only in order to make the data more manageable. 

First, we need to determine if the series is stationary or not.  The first graph in this report (“Average Daily Temperature in Milan, Italy 1995-2013”) does not show an overall trend either. Examining the graph of the data above (“Seasonally Adjusted Daily Temperature 1995”) does not reveal any overall trend.  This indicates that the series is stationary.
Next we will form a correlogram from the data. This can be done by computing the correlations between lags 1 through 50. This graph shows us how much interdependency there is between adjacent data within the series.  For a stationary series, the autocorrelation function must approach zero as the displacement gets large.  The sample autocorrelation function is an estimate of the autocorrelation function.  

[image: image5]
The correlogram shows that the sample autocorrelation function falls to close to zero after a lag of six.  The first three points (0.67, 0.39, and 0.25) are significantly larger than zero, so we can be fairly certain that the true autocorrelation coefficient is greater than zero.  The pattern suggests that the data could be modeled by an autoregressive model. 
Model Specification and Estimation
The graphs we have looked at so far indicate that today’s temperature depends on the temperature over the past few days; now we need to determine the smallest number of proceeding days needed to model a day’s temperature. It appears this number is at least one and could be as large as four. We ran a linear regression of the temperature on the temperature for the past one, two, three and four days. The results are summarized below:
Table 1 – Regression Analysis between Deseasonalized Temperature Separated by up to 1 Days

	Regression Statistics
	
	

	Multiple R
	0.658981587
	
	

	R Square
	0.434256732
	
	

	Adjusted R Square
	0.432667566
	
	

	Standard Error
	3.652582654
	
	

	Observations
	358
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	19.00229927
	2.082508
	9.124720343

	X Variable 1
	0.644038054
	0.03896
	16.53059865


Table 2 – Regression Analysis between Deseasonalized Temperature Separated by up to 2 Days

	Regression Statistics
	
	

	Multiple R
	0.667050522
	
	

	R Square
	0.444956399
	
	

	Adjusted R Square
	0.441829393
	
	

	Standard Error
	3.622969914
	
	

	Observations
	358
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	21.24000332
	2.235733
	9.500239933

	X Variable 1
	0.736355441
	0.052333
	14.07053541

	X Variable 2
	-0.134458237
	0.051399
	-2.615988038


Table 3 – Regression Analysis between Deseasonalized Temperature Separated by up to 3 Days

	Regression Statistics
	
	

	Multiple R
	0.670825457
	
	

	R Square
	0.450006794
	
	

	Adjusted R Square
	0.445345834
	
	

	Standard Error
	3.611539636
	
	

	Observations
	358
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	19.53045469
	2.421999
	8.063774595

	X Variable 1
	0.74902713
	0.052639
	14.22941426

	X Variable 2
	-0.208155457
	0.065544
	-3.1758176

	X Variable 3
	0.093258684
	0.051725
	1.802958067


Table 4 – Regression Analysis between Deseasonalized Temperature Separated by up to 4 Days

	Regression Statistics
	
	

	Multiple R
	0.670934914
	
	

	R Square
	0.450153658
	
	

	Adjusted R Square
	0.443923105
	
	

	Standard Error
	3.616168604
	
	

	Observations
	358
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	19.81255336
	2.593288364
	7.639934547

	X Variable 1
	0.750327337
	0.052876636
	14.19014897

	X Variable 2
	-0.211491832
	0.066521281
	-3.179310858

	X Variable 3
	0.105818331
	0.065995534
	1.603416538

	X Variable 4
	-0.015835758
	0.051571967
	-0.307061364


The regression statistics show the following:

· The t-values for the past day’s temperatures are always very high;
· The R-squared changes significantly from 1-variable regression to 2-variable regression, but does not change significantly as we add the third or fourth days’ temperature to the regression;

· The standard error does not materially decrease as we add more variables beyond the first.

High t-values for the past day’s temperature indicate there is a relationship between the temperatures on two consecutive days.  The fact that R-squared only changes significantly when adding one variable and the standard error does not decrease materially beyond adding one variable indicate that adding one variable improves the regression, but adding two variables or more to the regression does not materially improve the results. So, while there may be some correlation between today’s temperature and the temperature three days ago, it is not significant enough to justify the additional variables.
Based on the analysis we have performed so far, it appears that an AR (1) model is most appropriate for our data.  Let us look at the results of a few more statistical tests.
Durbin-Watson Test
Next, we performed a Durbin-Watson statistic on all 4 regression equation.  Table 5 shows the results:


Table 5 – Durbin-Watson Statistic:  Test for Serial Correlation



	Number of Independent Variables
	Durbin-Watson Statistic

	1
	1.82917

	2
	1.97475

	3
	2.00258

	4
	2.00134


We can accept the null hypothesis of no serial correlation because the durbin-watson statistic for all four regressions was around 2.
Box-Pierce Q Statistic
Next we calculated the Box-Pierce Q Statistic for the residuals of the four regressions.  

The following are the results for k=51:
Table 6 – Chi-Square Critical Values for 51 Degrees of Freedom:  
	Level of Significance
	.10

	Critical Value
	64.2954


Table 7 – Box Pierce Q Statistic Values for 51 Degrees of Freedom:  
	Number of Independent Variables
	Box Pierce Q Statistic
	Rejection of Null (.1 level)
	Conclusion

	1
	23.4525
	Do not reject
	White noise

	2
	31.2402
	Do not reject
	White noise

	3
	34.4533
	Do not reject
	White noise

	4
	35.8567
	Do not reject
	White noise


We do not reject the null hypothesis that the residuals are a white noise process at the 10% significance level because the box pierce Q statistic is less than the chi-square critical value. 
Conclusion
After de-seasonalizing the temperature data, we attempted to produce a time series model that would explain the temperature in the city of Milan from 1995 to 2013.  Based on the correlogram, we ruled out a moving-average model because of a sloping curve towards zero instead of a discrete drop from the lag 1 coefficient value to zero at lag 2.  Thus we examined the autoregressive model to see if we could produce an equation that could describe the temperature process.
After performing 4 regression analyses ranging from one independent variable (lag 1) up to four independent variables (lag 4), we see that all of the lags have low R2 and adjusted R2.  This result might indicate a more complex model is required to explain temperature like an ARIMA.  However, because I am only using Excel it is difficult to model an ARIMA process. Next, we performed a Durbin-Watson Statistic and found that there was no serial correlation present.  This means that the error terms from adjacent days are not correlated.  Finally a Box-Pierce Q Statistic test was performed to see if the residuals of the 4 models were white noise or not.  From the results we see that all 4 models were below the critical level suggesting that their residuals were random white noise.  Therefore from the models we tested it would seem that the best one was the AR(1) due to it being the least complex and the fact that adding additional variables did not materially increase the accuracy of the model.  
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