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Introduction 

Sale for Tuxedo shirts is vary from season to season in a year in Washington DC. In the situation, the 

growth of business is required business owner to find more capital or fund. In the requirement of 

financial institute, business owner should provide the business forecast for at least future 12 months for 

finance approval.  The purpose of project is to consider the various time series models for forecasting 

the Sale volume and subject to utilize that model to forecast it in future period. 

In here, we are using the Minitab software for statistical tool on this project. 

 

Data Analysis and Model Fitting 

The sale volume has been collected monthly for 8 years. First, we shall plot the time series data without 

any adjustments. 

 

Fig. 1 The sale volume for last 8 years 

 

 Figure 1 presents the sale volume in the past 8 years. Also, we can see obviously that the 

increasing trend of data over the time period and the seasonal effect during a year. However, it is better 

to bring the theoretical for supporting those observations. 

 Next, we plot correlogram for the sample autocorrelation. We can see in Fig.2 that the 

autocorrelation pattern is tend to repeat every 12-period cycle. We can confident on Fig.2 that there is a 

seasonal effect for 12-period. Also, the autocorrelation result is seemed to appear in the positive area, 

which can imply non-stationary data. 
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 By considering the result on both Fig.1 and Fig.2, we decide to take the 1st difference of lag 12 

data for minimizing the seasonal effect and trend removal. After this action, we find that there is slightly 

remaining trend in data diff12 (first difference of 12 lag), which is presented in Fig.3. Then, we prefer to 

remove the remaining trend by taking the 1st difference of diff12, which we initiate new variable called 

“diff1diff12”. In Fig.4, we can see by observation that the diff1diff12 is nearly remaining trend. 

 

 

Fig.2 The autocorrelation of Sale volume 

 

 

Fig.3 The time series data diff12 after 1st difference of 12 lag 
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Fig.4 The time series data diff1diff12 after 1st difference of diff12 

 

 

Fig.5 The autocorrelation of data diff1diff12 
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Fig.6 The partial autocorrelation of data diff1diff12 

 

 After that, we plot the correlograms for autocorrelation and partial autocorrelation in Fig.5 and 

Fig.6. By considering both results, we initially think that the time series diff1diff12 should model with 

ARMA(2,1). 

 

Table.1 ARIMA (2,1,1) x (0,1,0)12 result 

Type        Coef  SE Coef      T      P 

AR   1    0.1327   0.1213   1.09  0.278 

AR   2    0.0054   0.1196   0.05  0.964 

MA   1    0.9696   0.0736  13.17  0.000 

Constant   177.2    179.4   0.99  0.326 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 96, after differencing 83 

Residuals:    SS =  79925161034 (backforecasts excluded) 

              MS =  1011710899  DF = 79 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    9.8   38.1   48.5   61.3 

DF              8     20     32     44 

P-Value     0.282  0.009  0.031  0.043 

 

From Table.1, we observe that the P-value for AR-1, AR-2 and constant leads us to accept H0 which is 

coefficient is equal to zero. 
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Then, we try another model ARIMA (0,1,1) x (0,1,0)12, which idea is come from removing both AR 

coefficients. 

 

Table.2 ARIMA (0,1,1) x (0,1,0)12 result 

Type        Coef  SE Coef      T      P 

MA   1    1.0190   0.0266  38.35  0.000 

Constant  271.86    72.53   3.75  0.000 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 96, after differencing 83 

Residuals:    SS =  77085827647 (backforecasts excluded) 

              MS =  951676885  DF = 81 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.4   36.3   48.9   58.3 

DF             10     22     34     46 

P-Value     0.327  0.028  0.047  0.105 

 

From Table.2, we observe that the P-value for MA-1 and constant leads us to reject H0 which we 

conclude the coefficient should not equal to zero with higher than 95% confident level. Moreover, with 

considering the result of ACF and PACF of residual in Fig.7 and Fig.8, the residual seems not to have the 

significant autocorrelation. 

 

 

Fig.7 The autocorrelation function of residual for ARIMA(0,1,1)(0,1,0)12 model 
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Fig.8 The partial autocorrelation function of residual for ARIMA(0,1,1)(0,1,0)12 model 

 

 

Fig.9 The forecast time series plot on sale volume for ARIMA(0,1,1)(0,1,0)12 model 
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Summary 

 To forecast the sale volume in next 12 months, we believe that ARIMA(0,1,1)(0,1,0)12 model can 

well forecast with theoretically statistical supports. In Fig.9, the forecast result on next 12 months is vary 

by seasonal and trend to growth. We can bring this report submit to financial institute to be evident 

supporting for capital approval.   

 

 

 


