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Introduction 

 

The purpose of this project is to illustrate how we can analyze the linear regression model and 

the residuals in the model, and how do we test homoscedasticity and heteroscedasticity by  

three different tests in SAS. 

 

First, I will explain how to quickly check the linear regression model and run normality tests (the 

Shapiro-Wilk Test and the Kolmogorov-Smirnov test) by SAS output. Part of the project is to 

discuss how to analyze the residuals by verifying graphics in SAS. Finally, I try to detect 

homoscedasticity and heteroscedasticity by Spearman test, White test and Breusch- Pagan test.   

 

 

Consider the data from the website: http://lx2.saas.hku.hk/staff/kaing/tdg/data8/d103.txt 

where: 

States: Different states of the USA. 

MA: number of married people / 10 000 inhabitants 

D: Number of divorced people/ 10 000 

DR: Number of doctors / 100 000 inhabitants 

DN: Number of Dentists / 100 000 inhabitants 

HS: Number of officers  / 1,000 people 

CR: Number of crimes / 100 000 inhabitants 

M: Number of people killed / 100 000 

PI: Number of prisons / 100,000 residents 

RP: % vote for a Republican candidate for the presidential election 

VT: % of voting for a presidential candidate among the population of voting age 

PH: Percentage (in 1979) people with a phone 

INC: Income (dollars) per capita in 1972 

PL: Number of persons / 1000  people living below the poverty line 

http://lx2.saas.hku.hk/staff/kaing/tdg/data8/d103.txt
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*************SAS Code   *************; 

data donnee; 

input State $ MA   D   DR    DN   HS   CR    M    PI   RP   VT     PH   INC  PL; 

cards; 

 
      State    MA     D     DR   DN    HS    CR      M    PI    RP    VT   PH    INC    PL 

 

        ME      109    56   146   45   678   4368    28    61   456   648   54   4430   120 

        NH      102    59   159   53   703   4680    25    35   577   578   58   5105    79 

        VT      105    46   211   58   697   4988    22    67   444   583   52   4372   135 

        MA       78    30   258   71   723   6079    41    56   419   593   58   5660    71 

        RI       79    39   206   56   617   5933    44    65   372   590   57   5281    87 

        CT       82    45   242   73   703   5882    47    68   482   612   64   6552    67 

        NY       81    37   261   74   662   6912   127   123   467   480   54   5736    94 

        NJ       75    32   184   66   664   6401    69    76   520   551   66   6107    81 

        PA       80    34   183   55   648   3736    68    68   496   520   62   5273    97 

        OH       93    55   157   49   677   5431    81   125   515   554   56   5289    94 

        IN      110    77   126   43   670   4930    89   114   560   577   57   4995    81 

        IL       97    46   182   54   661   5275   106    94   496   578   66   5881   105 

        MI       97    48   154   53   686   6676   102   163   490   598   60   5562    91 

        WI       84    36   151   58   703   4799    29    85   479   677   55   5225    77 

        MN       91    37   185   62   724   4799    26    49   425   704   57   5436    83 

        IA       96    39   122   50   723   4747    22    86   513   629   59   5232    79 

        MO      109    57   158   48   641   5433   111   112   512   589   58   5021   120 

        ND       92    32   126   47   676   2964    12    28   642   651   63   4891   106 

        SD      130    39   102   43   689   3243     7    88   605   674   56   4362   131 

        NE       89    40   145   61   743   4305    44    89   655   568   61   5234    96 

        KS      105    54   150   46   731   5379    69   106   579   570   61   5580    80 

        DE       75    53   160   46   695   6777    69   183   472   549   64   5779    82 

        MD      111    41   257   59   693   6630    95   183   442   502   62   5846    77 

        VA      113    45   170   49   642   4620    86   161   530   480   53   5250   105 

        WV       94    53   133   39   533   2552    71    64   452   528   44   4360   151 

        NC       80    49   150   38   553   4640   106   244   493   439   53   4371   147 

        SC      182    47   134   36   571   5439   114   238   494   407   50   4061   172 

        GA      134    65   144   42   587   5604   138   219   409   417   55   4512   180 

        FL      117    79   188   50   648   8402   145   208   555   496   59   5028   144 

        KY       96    45   134   42   533   3434    88    99   491   500   48   4255   177 

        TN      135    68   158   48   549   4498   108   153   487   489   53   4315   158 

        AL      129    70   124   35   555   4934   132   149   488   490   50   4186   164 

        MS      112    56   106   32   523   3417   145   132   494   521   47   3677   261 

        AR      119    93   119   33   562   3811    92   128   481   516   47   4062   185 

        LA      103    38   149   40   583   5454   157   211   512   537   52   4727   193 

        OK      154    79   128   42   656   5053   100   151   605   528   57   5095   138 

        TX      129    69   152   42   645   6143   169   210   553   456   55   5336   152 

        MT      104    65   127   57   725   5024    40    94   568   652   56   4769   115 

        ID      148    71   108   55   715   4782    31    87   665   685   54   4502   103 

        WY      144    78   107   49   753   4986    62   113   626   542   56   6089    87 

        CO      118    60   199   61   781   7333    69    96   551   568   57   5603    91 

        NM      131    80   147   41   657   5979   131   106   549   514   46   4384   193 

        AZ      121    82   187   49   725   8171   103   160   606   452   53   4915   138 

        UT      122    56   164   64   802   5881    38    64   728   655   53   4274    85 

        NV     1474   168   138   49   757   8854   200   230   625   413   63   5999    88 

        WA      120    69   178   68   763   6915    51   106   497   580   56   5762    85 

        OR       87    70   177   69   755   6687    51   120   483   616   55   5208    89 

        CA       88    61   226   63   740   7833   145    98   527   495   61   6114   104 

        AK      123    86   118   56   796   6210    97   143   543   583   36   7141    67 

        HI      128    55   203   68   730   7482    87    65   425   436   47   5645    79 
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; 

   run; 

 

  data donne1; 

  set donnee; 

  if MA="." then delete; 

  run; 

  Data analyse; 

  set donne1(drop=DN   HS   CR  PI   RP   PH); 

  run;      

  proc print data=analyse; 

  run; 

******* Part 1 A linear model without intercept;  

****** SAS OUTPUT 1****** 

proc reg;  

model M=MA D DR VT INC PL /noint;  

output out=Ia residual=res student=stud;  

run;  

***** Part 2 Normality tests;  

****** SAS OUTPUT 2****** 

proc univariate data=Ia normal plot;  

var res stud;  

run;  

***** Part3 Graphics - normality verification;  

************ SAS OUTPUT 3 ********** 
proc reg data=analyse;  

model M= MA D DR VT INC PL /noint;  

plot r.*p.;  

plot r.*npp.;  

plot r.*M ;  

run;  

********* Part 4 Detecting Homoscedasticity *******  

***** Spearman: Low correlation => Homoscedasticity;  

****** SAS OUTPUT 4a ****** 
proc corr data=analyse spearman ;  

var M MA D DR VT INC PL;  

run ;  

***** Heteroscedasticity test: The White Test & Breusch Pagan Test;  

****** SAS OUTPUT 4b ****** 

PROC REG DATA=analyse ;  

model M=MA D DR VT INC PL /noint ACOV;  

output out=Ib r=residus;  

run;  

proc model data=analyse;  

parms b1 b2 b3 b4 b5 b6;  

M=b1*MA+ b2*D+ b3*DR+ b4*VT+ b5*INC+b6*PL;  

fit M / white pagan=(MA D DR VT INC PL);  

run;  

quit;  

********************************************* 
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Part 1   A linear model without intercept 

************* SAS Code  ********** 

proc reg;  

model M=MA D DR VT INC PL /noint;  

output out=Ia residual=res student=stud;  

run;  

********************************* 

SAS OUTPUT 1 
                                        The SAS System        14:41 Monday, December 6, 2014   2 

 

                                        The REG Procedure 

                                          Model: MODEL1 

                                      Dependent Variable: M 

 

                       NOTE: No intercept in model. R-Square is redefined. 

 

                                       Analysis of Variance 

 

                                              Sum of           Mean 

          Source                   DF        Squares         Square    F Value    Pr > F 

 

          Model                     6         414092          69015     150.97    <.0001 

          Error                    44          20115      457.16002 

          Uncorrected Total        50         434207 

 

 

                       Root MSE             21.38130    R-Square     0.9537 

                       Dependent Mean       81.78000    Adj R-Sq     0.9474 

                       Coeff Var            26.14490 

 

 

                                       Parameter Estimates 

 

                                    Parameter       Standard 

               Variable     DF       Estimate          Error    t Value    Pr > |t| 

 

               MA            1        0.02906        0.02442       1.19      0.2406 

               D             1        0.31291        0.22206       1.41      0.1658 

               DR            1        0.06281        0.09189       0.68      0.4979 

               VT            1       -0.28638        0.03356      -8.53      <.0001 

               INC           1        0.02596        0.00517       5.02      <.0001 

               PL            1        0.64371        0.07142       9.01      <.0001 

We have a linear model without intercept  to estimate y = M by using six coefficients:

1 1 2 2 3 3 4 4 5 5 6 6y x x x x x x              

The values of the estimated parameters give the equation for the fitted model:   

0.02906 MA 0.31291 D 0.06281 DR 0.28638  VT  0.02596 INC 0.64371 PLM        
 
This is a multiple linear regression model.  

 The coefficient of determination: 

R² = R-Square = 0.9537. R² provides the proportion of variability in Y explained by the regression 

as 95.37%.  R² close to 1 will be associated with a good fit. 
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 Test the hypothesis: 

F-value = 150.97 is used to test the null hypothesis: 

0 1 2 3 4 5 6: 0H           
   against 1 :H

 at least one coefficient 
0, 1, ,6i i  

  

From the output of SAS, associated P-value <0.0001, this causes a rejection of this hypothesis at      

the 5% level. It indicates that at least one coefficient beta is not zero. 

 

 The t-statistic: 
The value t is used to test the hypothesis on individual parameters. 
For example, a statistic t = 0.68 is to test the null hypothes β3=0‚ at the 5% level. The test shows if 
there is variation in M due to DR. The P value for the hypothesis (β3=0) is 0.4979. The null 
hypothesis is accepted. It means that there is no great effect due to the variable DR. DR can be 
removed. Similarly, we can also remove MA and D. 
The P value for the hypothesis (β4=0) is <0.0001. This is significant. We can reject the null 
hypothesis. It means that there is effect due to the variable VT. You can’t remove VT. 
The results of the t-statistic show that the variables INC, PL have the same situation as the 
variable VT. 
Conclusion: if you want to remove an explanatory variable, DR is always the first choice   

        because it has very big P-value.  

 

Part 2   Tests for Normality 

 

************* SAS Code********* 

proc univariate data=Ia normal plot;  

var res stud;  

run;  

******************************** 

    SAS OUTPUT 2                The SAS System        14:41 Monday, December 6, 2014   3 
                                     The UNIVARIATE Procedure 

                                    Variable:  res  (Residual) 

                                     

                                       Tests for Normality 

 

                    Test                  --Statistic---    -----p Value------ 

 

                    Shapiro-Wilk          W     0.960049    Pr < W      0.0893 

                    Kolmogorov-Smirnov    D     0.110306    Pr > D      0.1305 

                    Cramer-von Mises      W-Sq  0.136736    Pr > W-Sq   0.0362 

                    Anderson-Darling      A-Sq  0.783313    Pr > A-Sq   0.0410 

 

 

 

                                    The UNIVARIATE Procedure 

                                    Variable:  res  (Residual) 

 

                                      Normal Probability Plot 
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                       42.5+                                           * ++* 

                           |                                        ** ++ 

                           |                                        +++ 

                           |                                    ***+ 

                           |                                 ***++ 

                           |                                 ++ 

                           |                              +** 

                           |                            +*** 

                           |                          ++** 

                           |                       ++*** 

                           |                   ******* 

                           |                  +*+ 

                           |               **** 

                           |         ** ***+ 

                           |           ++ 

                           |       *+++ 

                           |      ++ 

                      -42.5+   *++ 

                            +----+----+----+----+----+----+----+----+----+----+ 

                                -2        -1         0        +1        +2 

                                     The UNIVARIATE Procedure 

                             Variable:  stud  (Studentized Residual)                                  

                                       Tests for Normality 

                    Test                  --Statistic---    -----p Value------ 

 

                    Shapiro-Wilk          W     0.964624    Pr < W      0.1388 

                    Kolmogorov-Smirnov    D     0.114773    Pr > D      0.0966 

                    Cramer-von Mises      W-Sq  0.121324    Pr > W-Sq   0.0579 

                    Anderson-Darling      A-Sq  0.680639    Pr > A-Sq   0.0750 

                                         

                                     The UNIVARIATE Procedure 

                             Variable:  stud  (Studentized Residual) 

                                          Normal Probability Plot 

                        2.1+                                           * ++* 

                           |                                        ** ++ 

                           |                                         ++ 

                           |                                      *++ 

                           |                                   ***+ 

                           |                                 **++ 

                           |                                *++ 

                        0.7+                               +* 

                           |                             ++* 

                           |                           ++** 

                           |                         ++ * 

                           |                       ++*** 

                           |                     +**** 

                           |                   *** 

                       -0.7+                  ** 

                           |                ** 

                           |            **** 

                           |         ** ++ 

                           |          ++ 

                           |       *++ 

                           |      ++ 

                       -2.1+   *++ 

                            +----+----+----+----+----+----+----+----+----+----+ 

                                -2        -1         0        +1        +2 
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 Normality tests: 
 

 The Shapiro-Wilk Test:  This test also tests the normality of our residuals by comparing them with 
expected values. The test returns a W statistic, which informs us the normality of the data. 
The Shapiro-Wilk Test accepts the normality assumption: The statistic W = 0.960049 for residuals 
and W = 0.964624 for studentized residuals. For both of them, W is very close to 1, which 
indicates that it is approximately a normal distribution.  P-Value = 0.0893> 0.05 for residuals, P-
Value = 0.1388 > 0.05 for studentized residuals.For both of them, P-Value < W, so we accept the 
null hypothesis of normality. 

 
 The Kolmogorov-Smirnov test. This test is often used when the sample size is large. 

The Kolmogorov-Smirnov also accepts residuals normality assumption. The statistic D = 0.110306 
and P Value = 0.1305> 0.05, so we accept the null hypothesis. 
 

 The graphic "Normal Probability Plot" is a line for both residuals and studentized residuals, which 
shows that the errors are normally distributed. 
 

Conclusion: By "Normal Probability Plot" and our various tests, we conclude that the residuals are 
normally distributed. Indeed, the "Normal Probability Plot" has the appearance of a line and tests 
confirm the hypothesis. 

 

Part 3 Residual Analysis in Regression by graphics 

*************SAS Code*************  

proc reg data=analyse;  

model M= MA D DR VT INC PL /noint;  

plot r.*p.;  

plot r.*npp.;  

plot r.*M ;  

run;  

*********************************            SAS OUTPUT 3 

Graphic 1 
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Graphic 2 

 

Graphic 3 

 

 

Graphic 1 

We have the following equation: Residuals = M - Predictive Value. The graph (residuals* predicted) shows 

a scatter relatively evenly distributed randomly between -60 and 60 (the interval is not small) and it is 

also symmetrical around the x-axis. Indeed, as the hypothesis associated with the model are correct, 

residuals and predicted values are not correlated. Therefore, the trace of the points should not have any 

particular structure.  

 

Graphic 2 

We can verify the distribution of residuals by QQ-Plot - "Normal Probability Plot" . Using  plot r. * Nqq.; 

run; in SAS, we can visualize the distribution of residuals in this model. We see that the points lie on or 
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very close to a straight line. Therefore, it is compatible with the normal distribution. 

 

Graphic 3 

If  we make a graphics of residuals depending on the response Y (M here) to see the quality of the 

regression, we can also find a linear regression.  The residuals randomly distribute between -60 to 60. 

Conclusion:  we have the same conclusion for these 3 graphics. 

 

Part 4  Detecting Heteroscedasticity 

The ordinary least squares (OLS) makes the assumption that the error ε in the regression model had a 
constant variance σ 2  for all x ,which means variances var(εi) = σ 2  do not depend on the x-value. This is 
one of the Gauss-Markov condition, which states that var(εi) = var(yi) is a constant σ 2. Consequently, each 
probability distribution for y (response variable) has the same standard deviation regardless of the x-
value (predictor). This assumption is homoscedasticity. 
 If the error terms do not have constant variance, they are said to be heteroscedastic.  
 
Very frequently, we can determine if heteroscedasticity is likely to be present and also determine what 
corrective measures might be taken. 
At first, we will see if their variance (or quantities proportional to them) can be guessed. There are 
several statistical tests in SAS can help us to test the equality of variance, such as Spearman test, White 
test, and Breusch- Pagan test, etc.   
To check to see if heteroscedasticity is present, another way is through the residuals plots to see whether 
the variance of error is constant.  (See part 3 Residual Analysis in Regression by graphics). 
 
If in fact that variance of error is not constant then it is better to modify model by using weighted least 
squares (WLS) method to get the estimators rather than using the ordinary least squares (OLS) method. 
Transformation of variables can also be used to stabilize variances. If the response variable represents a 
count, then a Poisson distribution can be considered for modelling the response. In a Poisson regression, 
the unequal variance is expected due to the nature of the count data.  
 
**************SAS Code ************** 
PROC REG DATA=analyse ;  

model M=MA D DR VT INC PL /noint ACOV;  

output out=Ib r=residus;  

run;  

**************************************** 
  SAS OUTPUT 4                     The SAS System       21:51 Tuesday, December 7, 2014  12 
                                        The REG Procedure 

                                          Model: MODEL1 

                                      Dependent Variable: M 

 

                                Consistent Covariance of Estimates 

 

Variable    MA              D             DR             VT            INC             PL 

 

MA         0.0003573061   -0.004052164   -0.000173725     0.00010143   0.0000119602   0.0007607911 

D          -0.004052164   0.0535420807   0.0076283856   0.0009424341   -0.000578784   -0.011005308 
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DR         -0.000173725   0.0076283856   0.0090140361   0.0008693459   -0.000413447   -0.001811813 

VT           0.00010143   0.0009424341   0.0008693459   0.0009808474   -0.000125022   -0.000867191 

INC        0.0000119602   -0.000578784   -0.000413447   -0.000125022   0.0000291511   0.0001498898 

PL         0.0007607911   -0.011005308   -0.001811813   -0.000867191   0.0001498898   0.004743984 

Testing for Heteroscedasticity by SAS 
 
The regression model is specified as yi = xiβ+εi, where the εi’s are identically and independently 
distributed: E(ε) = 0 and E(ε’ε) =σ²Ι.  If the εi’s are not independent or their variances are not constant, the 
parameter estimates are unbiased, but the estimate of the covariance matrix is inconsistent. In the case of 
heteroscedasticity, the ACOV option provides a consistent estimate of the covariance matrix. If the 
regression data are from a simple random sample, the ACOV option produces the covariance matrix. 
This matrix is (X’X)

 -1
 (X’diag(εi(

2) X ) (X’X)
 -1   

where εi= yi - xib 

i 

)X)(X0X)�1 
 

 
ACOV in the SAS model statement displays the estimated asymptotic covariance matrix of the estimates 
under the hypothesis of heteroscedasticity. 
With the ACOV option, the point estimates of the coefficients are exactly the same as in ordinary OLS, but 
we will calculate the standard errors based on the asymptotic covariance matrix. 
The standard error obtained from the asymptotic covariance matrix is considered to be more robust and 
can deal with a collection of minor concerns about failure to meet assumptions, such as minor problems 
about normality, heteroscedasticity, or some observations that exhibit large residuals, leverage or 
influence. For such minor problems, the standard error based on ACOV may effectively deal with these 
concerns.  
 

Part 4a    Spearman test 

The Spearman rank-order correlation coefficient (Spearman’s correlation, for short) is a nonparametric 
measure of the strength and direction of association that exists between two variables measured on at 
least an ordinal scale. This test determines if two variables are related and specifies the degree of 
relationship. It is denoted by the symbol rs (or the Greek letter ρ, pronounced rho). 
 
For a sample of size n, the n raw scores Xi,Yi are converted to ranks xi,yi , and ρ is computed from: 

2

2

6
 1

( 1)
s

d
r

n n
   



      where: di=xi-yi, the difference of the ranks for each pair of variables 

                                                             n = number of pairs of variables. 
 
Procedure in the use of the Spearman test for homoscedasticity testing: 

 The hypotheses in Spearman test are H0 : ρ =0, Homoscedasticity  against  H1 : 
Heteroscedasticity.  

 Fit the regression to the data on X and Y variables, then obtain the residuals  εi. 
 Use the absolute values of εi. Enter the ranks for the absolute values of εi and the ranks for the Xi 

variable, then compute the Spearman correlation coefficient. If the regression model involves 
more than one X variable, rs can be computed between εi and each of  X variables separately 

 
For the sample greater than 8 or (some people will say 10), the significance can be tested by using t test. 
How to calculate probability values? 
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 When n is 10 or more, rs is approximated by a t distribution with n-2 degrees of freedom. When 

the null hypothesis is H0 : ρs = 0 the standardized t statistic can be written 
2

2
t *

1
s

s

n
r

r






 

If t value is greater than 
/2, 2t n 

 value, then heteroscedasticity exists or there’s unequality of 

variance. 
 When n is  greater than 30, the significance of rs can be tested by using standard normal Z with 

the following formula: 0
* 1

1
1

s
s

r
z r n

n


  



      

   
/2 /2If z z and z z    then heteroscedasticity exists. 

 
Note that this method should not be used in cases where the data set is truncated; that is, when the 
Spearman correlation coefficient is desired for the top X records (whether by pre-change rank or post-
change rank, or both), the user should use the Pearson correlation coefficient formula. 
 

****** SAS Code 4a *********** 
***** Spearman Test;  

proc corr data=analyse spearman ;  

var M MA D DR VT INC PL;  

run ;  

****************************** 
SAS OUTPUT 4a                     The SAS System       17:42 Tuesday, December 7, 2014   2 
                                     The CORR Procedure 

 

          7  Variables:    M        MA       D        DR       VT       INC      PL 

 

 

                                        Simple Statistics 

 

    Variable           N          Mean       Std Dev        Median       Minimum       Maximum 

 

    M                 50      81.78000      45.13214      83.50000       7.00000     200.00000 

    MA                50     135.50000     194.50012     107.00000      75.00000          1474 

    D                 50      57.78000      22.62768      55.00000      30.00000     168.00000 

    DR                50     161.86000      40.15227     153.00000     102.00000     261.00000 

    VT                50     551.40000      75.14096     552.50000     407.00000     704.00000 

    INC               50          5130     719.77324          5217          3677          7141 

    PL                50     115.68000      42.19268     100.00000      67.00000     261.00000 

 

                            Spearman Correlation Coefficients, N = 50 

                                    Prob > |r| under H0: Rho=0 

 

                 M           MA            D           DR           VT          INC           PL 

 

  M        1.00000      0.32536      0.40782     -0.00139     -0.77546     -0.02181      0.49146 

                         0.0211       0.0033       0.9923       <.0001       0.8805       0.0003 

 

  MA       0.32536      1.00000      0.67392     -0.44367     -0.30563     -0.29935      0.35531 

            0.0211                    <.0001       0.0013       0.0309       0.0347       0.0113 

 

  D        0.40782      0.67392      1.00000     -0.32055     -0.27943     -0.12900      0.25001 

            0.0033       <.0001                    0.0232       0.0494       0.3720       0.0799 

 

  DR      -0.00139     -0.44367     -0.32055      1.00000     -0.08376      0.48274     -0.35598 
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            0.9923       0.0013       0.0232                    0.5630       0.0004       0.0112 

 

  VT      -0.77546     -0.30563     -0.27943     -0.08376      1.00000      0.06344     -0.44180 

            <.0001       0.0309       0.0494       0.5630                    0.6616       0.0013 

 

  INC     -0.02181     -0.29935     -0.12900      0.48274      0.06344      1.00000     -0.72357 

            0.8805       0.0347       0.3720       0.0004       0.6616                    <.0001 

 

  PL       0.49146      0.35531      0.25001     -0.35598     -0.44180     -0.72357      1.00000 

            0.0003       0.0113       0.0799       0.0112       0.0013       <.0001 

 
 Definition in SAS: Spearman rank-order correlation is a nonparametric measure of association 

based on the ranks of the data values. The formula in SAS is:  
     

 

where  is the rank of ,   is the rank of ,   is the mean of the   values, and   is the mean 
of the   values.  
 

 For example: For M, the first line is 'Spearman correlation coefficient’;  
                        the second line is 'P-value'. 
 

 The result of SAS OUTPUT shows that Spearman test shows that we can accept the null 
hypothesis H0: Homoscedasticity. 

 

Part 4b White test and Breusch- Pagan test 
 

The result of the OLS regression (Ordinary Least Square) is presented in the SAS output. 
To detect homoscedastic, we used the White test and the Breusch- Pagan test. 

 
******************* SAS Code  4b **************** 
PROC REG DATA=analyse ;  

model M=MA D DR VT INC PL /noint ACOV;  

output out=Ib r=residus;  

run;  

proc model data=analyse;  

parms b1 b2 b3 b4 b5 b6;  

M=b1*MA+ b2*D+ b3*DR+ b4*VT+ b5*INC+b6*PL;  

fit M / white pagan=(MA D DR VT INC PL);  

run;  

quit;  

************************************************ 

SAS OUTPUT 4b                    The MODEL Procedure 
                                   The Equation to Estimate is 

                      M =  F(b1(MA), b2(D), b3(DR), b4(VT), b5(INC), b6(PL)) 

 

                                     Heteroscedasticity Test 

 

   Equation        Test                Statistic     DF    Pr > ChiSq    Variables 

 

   M               White's Test           28.42     27        0.3898    Cross of all vars 

                   Breusch-Pagan           1.66      6        0.9479    MA,D,DR,VT,INC, PL,1  
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 The White test: 
 

In statistics, the White test is a statistical test that establishes whether the residual variance of a variable 

in a regression model is constant. This test does not assume that the residuals are normally distributed. 

The test uses the null hypothesis H0 : no heteroscedasticity  against HA : there is heterocedasticity of 

some form. It is easy to implement. The principle is that we effect an auxiliary regression: regress squared 

residuals on all variables, their squares and all possible non-redundant cross-products. For example: We 

take the square and products increasing the variables of the model. Under the assumption of 

homoscedastic, it is shown that n * R ² follows a Chi-square with df (degree of freedom) = number of 

regressors. A disadvantage is that in the presence of several estimators, products quickly consume the 

degrees of freedom. 

 

The result of SAS OUTPUT shows that White test gives a probability of chi-square = 0.3898> 0.05. We 
cannot reject the null hypothesis of homoscedasticity. 
 
 The Breusch- Pagan test: 
 
The Breusch-Pagan tests whether the estimated variance of the residuals from a regression is dependent 
on the values of the independent variables. Mechanically it is very similar to White's test. Breusch-Pagan 
tests the null hypothesis that the error variances are all equal (H0: homoskedasticity) versus the 
alternative that the error variances are a multiplicative function of one or more variables. 
For example, the alternative hypothesis states that the error variances increase (or decrease) as the 
predicted values of Y increase. 
 
The test statistic is 0.5 * ESS of this regression and it follows a chi ^ 2 with df = (k-1) where k is the 
number of variables used in the regression. This test has the advantage of being independent of an 
arbitrary choice. This test, however, assumes that the residuals are normally distributed. 
The result of SAS OUTPUT shows that the Breusch-Pagan test for this model gives a probability of chi ^ 2 
= 0.9479> 0.05. We cannot reject the null hypothesis of homoscedasticity. 
 
Conclusion: We can conclude that all these tests show there is no heteroskedasticity in this model. 

 

 

Conclusion 

 

When solving the four parts of the project, I applied the theories and knowledge we learned 

from the the course Regression Analysis. 

I build a linear model without intercept in SAS. I want to verify if the errors are normally 

distributed and if they are homoskedastic errors. I have illustrated all this using a number of 

realistic results from SAS output. 


