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Monthly Sunspot Count 

 

Introduction 

Sunspots are areas of the sun that appear darker in comparison to the rest of the sun’s surface.  

Sunspots are closely tracked because they emit solar flares, which can be potentially harmful to the 

United State’s power grid.  Additionally, Solar cycles track very closely with temperature for much of this 

century, leading to the belief that temperature is more controlled by solar activity than CO2.   

Data 

For this analysis, I will use data fromhttp://solarscience.msfc.nasa.gov/greenwch/spot_num.txt .  This 

data gives monthly Suns back to the mid 18th century, shown below.   

 

 

http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt


 

For the purpose of this exercise, I will take data beginning in 1950, below.  The model will be completed 

on data through 1995, with the remaining points used as a “hold out” data set to test our model. 

 

Looking at this time series, there is strong suggestion that the number of sunspots in a given month is 

not a stationary process.  Also it is clear that there is seasonality in the data.  We can confirm this by 

looking at the Sample Autocorrelation function, shown below: 

 



The sample autocorrelation function was developed using Excel.  Per Cryer and Chan 6.1.1, the sample 

autocorrelation at lag k is given by the sample covariance at k divided by the sample variance.  By 

looking at the peaks of the correlogram, we can see that there is approximately 130 month lag in the 

seasonality of the data. 

After correcting for 130 month seasonality in the data, where St=Yt-Yt-130 we get the below chart:

 

Given the long runs above and below 0, it still appears that this is a Non-Stationary process.  To confirm, 

we once again look at the Correlogram.  The large diversion from 0 confirms that further transformation 

is necessary. 

 



Transformation 

We now have process St =Yt –Yt-130 .  Because this is still not a stationary process, I will take the first 

difference of Zt = St- St-1 , which does appear to be stationary. 

 

To confirm that the series is stationary, we can once again check the Correlogram: 

 

 



Now that this transformed process appears stationary, we can model this with an AR process.  

 

Model Selection 

An AR process takes the form of: 

AR(1):  Zt= a +B1Zt-1 + t  

AR(2):  Zt = a + B1Zt-1 +  B2Zt-2 + t  

AR(N):  Zt = a + B1Zt-1 +  B2Zt-2 …+…BNZt-N + t  

 

Using Excel’s Regression tool, the equations for the AR processes are as follows: 

An AR process takes the form of: 

AR(1):  Zt= .005 +-.351Zt-1 + t  

AR(2):  Zt = .053 + -.256Zt-1 +  -.441Zt-2 + t  

AR(3):  Zt = .145 + -.116Zt-1 +  -.306Zt-2 + -.472Zt-3 + t  

The results can be summarized in a table: 

Summary Table 

  Standard Error R2 Adj. R2 

AR(1) -0.351 25.96 0.123 0.12 

AR(2) -0.697 25.15 0.181 0.177 

AR(3) -0.894 24.97 0.193 0.187 

In examining this summary table, the R2 and Adj. R2 are very low.  Because of this, I am likely not working 

with a stationary process and I will re-examine the transformation step.   

 

 



Transformation Take II 

Rather than using First differences, I will now use the second difference of the Seasonally adjusted 

process.  Thus far, we have the following transformations: 

St =Yt –Yt-13 


Seasonal Adjustment 

Zt = St- St-1 


First Difference 

Qt = Zt- Zt-1 


Second Difference 

The charts for the data points Q(t) and Sample Autocorrelation function are as follows: 

 

 

 



From the above charts, we see no improvement over the 1st difference transformation that was 

attempted earlier.  Nonetheless, we will again try to model the time series using various AR(N) 

processes, as described above.  Due to Parsimony, An AR process with N > 3 is likely more complex than 

necessary.  After fitting using the Excel Regression tool, We get the following 3 equations: 

AR(1):  Qt= .009 +-.592Qt-1 + t  

AR(2):  Qt = .087 + -.478Qt-1 +  -.877Qt-2 + t  

AR(3):  Qt = .108 + -.367Qt-1 +  -.801Qt-2 + -1.053Qt-3 + t  

The results can be summarized in a table: 

Summary Table 

  Standard Error R2 Adj. R2 

AR(1) -0.593 36.75 .351 .350 

AR(2) -1.355 32.30 .501 .498 

AR(3) -2.22 30.11 .568 .565 

 

Durbin-Watson Test 
 

A Durbin-Watson statistic of 2 indicates no serial correlation. A Durbin-Watson <2 Indicates a remaining 

positive correlation between the residuals.  A Durbin-Watson >2 indicated there remains a negative 

correlation between the residuals.  The following are the results for the three regressions 

 

 DWS 

AR(1) 2.567 

AR(2) 2.352 

AR(3) 2.181 

With all Durbin-Watson statistics >2, we know that the residuals for each model have a strong negative 

correlation with the previous residual.  Ideally we would have a DWS = 2.  It is possible that we have 

over-differenced our model and should have stayed with the 1st difference.  Nonetheless, we will 

continue working with the 2nd difference model. 



Box-Pierce Q Statistic 
 

The Box-Pierce statistic is used to test the following using a χ2 
distribution: 

H0 = Residuals are from a white noise process 

H1 =Residuals are not from a white noise process 

Because the AR(1) model exceeds the critical value at the 10% significance for 414 degrees of freedom, 

which is ~451, we reject H0 ; that the residuals are white noise.  Both the AR(2) and AR(3) models may 

have residuals that are white noise. 

The Following chart shows the respective B-P Q statistics. 

 BPQS 

AR(1) 523.3 

AR(2) 346.4 

AR(3) 328.3 

 

The Durbin Watson test suggests that we may not have a white noise process.  Looking at the Box Pierce 

Q statistic, we are not able to reject a white noise process as a possibility at 10% significance for our 

AR(2) and AR(3) process. Furthermore, < -1 which indicate we may not have a stationary process.  

Nonetheless, Of the 3 models of 2nd differences above, I will select the AR(3) model because it performs 

marginally better in our Durbin-Watson tests and B-P Q test, but performs much better in the overall 

regression analysis.  the following are the residual graphs and Normal Plot for our AR(3) process.  The 

residuals scattered around the origin for the residuals indicate a fairly random process.  The Normal plot 

indicates that our distribution performs much worse in the tails. 

 



  

 

Forecasting 

In order to test a model, it is necessary to test forecast a “hold out” data set.  We compare our forecast 

to actual results to determine if we have chosen an appropriate model. 

Our selected model is  

AR(3):  Qt = .108 + -.367Qt-1 +  -.801Qt-2 + -1.053Qt-3 + t  

 

 

 

 



The below graph shows the predicted values vs. the actual values of this time series.  It is clear from the 

graph that our model is non-stationary.  It is possible that further seasonality existed or that there was a 

MA component that was missed in my analysis.  Further out, the model begins diverging exponentially 

from the actual value.  
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