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Introduction 
Chicago has recently earned the ignominious designation of the murder capital of the United States.  I decided to look at 

how the rate of murders in Chicago have developed over time, and whether or not it fits well with an autoregressive 

time series model.  To evaluate predictive power, I fit the models using 2001-2009 data, and then test the predictions of 

the model against (known) 2010 data.  This provides an empirical backdrop to the theoretical underpinnings.  This test is 

performed via Monte Carlo simulations, using the mean of one-thousand runs of the resultant distribution as the 

prediction for each month. 

Data 
The data used is crime date from 2001-2010 in Chicago, IL.  It is from https://data.cityofchicago.org/Public-

Safety/Crimes-2001-to-present/ijzp-q8t2 

All crimes are present, but I filtered for only homicide.  The models I fit are an AR(1) and an AR(2).  They are of the form 

𝑌𝑡 = Φ1𝑌𝑡−1 + 𝑒𝑡 + 𝐶 and 𝑌𝑡 = Φ1𝑌𝑡−1 +Φ2𝑌𝑡−2 + 𝑒𝑡 + 𝐶 respectively. 

Seasonality 
I suspected that there would be seasonality present in the data, on the theoretical basis that more crimes would be 

committed in warmer months than in colder months, as more people would be outdoors.  Summing the murders by 

month and year, we see the following tabular data.  Beneath, I overlay the murder rates across a representative sample 

of years.  Though there is naturally some variability, we see a clear trend for more murders in the summer months, and 

fewer in the winter months—in every year but one the maximum occurs in July or August, and that one exception has 

only 2 more murders in September than August.  Further, we can see that in aggregate the summer months have 

noticeably more murders than the winter months.  For example, compare July to December or January. 

 

January February March April May June July August September October November December Total

2001 42 27 37 59 42 69 78 58 71 71 64 49 667

2002 45 32 42 43 51 66 68 77 67 57 39 70 657

2003 39 31 52 57 59 52 68 48 51 53 51 43 604

2004 29 36 43 30 34 46 53 53 33 34 32 31 454

2005 20 24 37 36 43 50 58 53 32 41 29 30 453

2006 29 17 34 37 42 45 66 32 58 41 43 33 477

2007 26 22 41 36 34 47 44 47 49 38 30 34 448

2008 34 20 33 47 42 52 62 48 55 50 40 30 513

2009 25 25 20 40 47 45 57 48 43 37 37 36 460

2010 22 22 31 46 46 49 42 57 31 36 33 23 438

Total 311 256 370 431 440 521 596 521 490 458 398 379 5171

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
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To adjust for seasonality, it is first necessary to examine the entire time series and notice any trend.  In this data, there is 

a slight downward slope over time.  Performing a linear regression on the data, we find that the trend is 𝑌 =

−0.162𝑋 + 52.655.  After determining the trend at each point, we consider the residual of the data point and the 

trend.  For example, if there were 42 murders but the trend would expect 52.49, then the residual is -10.49.1  The 

average of these monthly residuals, by month, becomes the seasonal adjustment factor for each month, which is then 

subtracted from the original series to arrive at the seasonally adjusted series.  It is this resultant series which is then 

considered for the remainder of the analysis. 

 

 

                                                           
1 Obviously murders can only be whole numbers, but for the sake of mathematical precision, decimal values are used throughout.  
When doing a prediction or speaking to real-world values, these would be rounded. 
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After smoothing for the seasonality, we end up with: 

 

 

AR(1) 
To fit the data to an AR(1) model, we need to estimate the Φ parameter from the data.  This is accomplished by using 

the method of moments.  For an AR(1) case,  Φ̂ = 𝑟1 where 𝑟1is the sample autocorrelation at lag 1.  To compute this, 

we compute the deviation of each observation from the average of all observations.  The autocorrelation is then the 

sum of all offset products (the deviation at time t times the deviation at time t-1) over the sum of the squares of the 

deviation.  In this case, 𝑟1 = 0.50, leading to Φ = 0.50.  Because true AR processes have an error term, they are 

stochastic.  This will be of importance when forecasting, because we are therefore best served by using Monte Carlo 

simulation to look at a probability distribution of possible future murder rates, as opposed to a single deterministic 

projection.  One sequence of error terms gave rise to the following illustrative AR(1) process, fit to our murder rate data. 

 

AR(2) 
Fitting the AR(2) distribution is slightly more complicated.  Now, we need to calculate the autocorrelation at lag 1 and at 

lag 2.  Then, using method of moments leads us to estimates of Φ̂1 =
𝑟1(1−𝑟2)

1−𝑟1
2  and Φ̂2 =

𝑟2−𝑟1
2

1−𝑟1
2  .  The calculation of the 

autocorrelation at lag 2 is identical to that performed at lag 1 (explained above) except that the product is between 

times t and t-2, instead of t and t-1.  We find in this data that 𝑟2 = 0.55, leading to Φ1 = 0.305531 and Φ2 = 0.39319.  
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Notwithstanding the same caveats regarding stochastic simulations, below is an illustrative example of the AR(2) process 

fit to the murder data. 

 

Simulation 
Using the data for the proceeding years (2001-2009) to develop the series, I then simulated 1000 runs of random error 

variables for each of the next 12 months.  Using the average result for each month as the simulated variable, I think 

backed out the seasonal adjustment to return to a prediction on the same basis as the original data.  The results are 

below.  We see that both models can be calibrated to be fairly accurate.  In both cases, the many years in which July had 

more murders than August pulls the results toward this sort of prediction via the seasonal adjustment.  When, in 2010, 

the heaviest month was August instead of July, this resulted in large and opposite errors for both July and August. 

 

AR(1)

Obs Year Month Avg Simulated Murders SF Predicted Murders Actual Murders Error

1 2010 January 35.78 -12.61 23 22 1

2 2010 February 35.80 -18.56 17 22 -5

3 2010 March 35.64 -6.73 29 31 -2

4 2010 April 36.03 -1.45 35 46 -11

5 2010 May 35.81 -0.29 36 46 -10

6 2010 June 35.65 8.54 44 49 -5

7 2010 July 35.52 17.81 53 42 11

8 2010 August 36.18 7.97 44 57 -13

9 2010 September 36.42 7.58 44 31 13

10 2010 October 36.09 3.63 40 36 4

11 2010 November 36.11 -2.54 34 33 1

12 2010 December 35.94 -3.38 33 23 10

Total 431 438 -7
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Both models are plausible, and arguments could be made for either.  On the one hand, the sample variance for the AR(2) 

model is slightly lower, and there is perhaps theoretical justification for believing that both previous months have 

something to do with the current murder rate (in terms of a local trend).  Personally, however, I would be more swayed 

by the principle of parsimony—given that there is not a strong difference between the models, I would choose the 

simpler model, the AR(1). 

AR(2)

Obs Year Month Avg Simulated Murders SF Predicted Murders Actual Murders Error

1 2010 January 36 -12.61 23 22 1

2 2010 February 36 -18.56 18 22 -4

3 2010 March 35 -6.73 28 31 -3

4 2010 April 36 -1.45 35 46 -11

5 2010 May 36 -0.29 36 46 -10

6 2010 June 39 8.54 48 49 -1

7 2010 July 40 17.81 58 42 16

8 2010 August 38 7.97 46 57 -11

9 2010 September 31 7.58 39 31 8

10 2010 October 39 3.63 42 36 6

11 2010 November 31 -2.54 29 33 -4

12 2010 December 32 -3.38 29 23 6

Total 431 438 -7


