Name: Libin Guo Course: Regression Analysis Submission Date: January 2nd, 2015 Session: Fall 2010 VEE Student Project

Regression Analysis for Marriage Rate

I. Introduction

The marriage rate in America has declined gradually. There are many variables that could help explain the phenomena. Some of such variables are employment rate of men, female's educational attainment rate for a bachelor's or higher degree, and cohabitation rate of unmarried couples. This paper would conduct a regression analysis of marriage rate by using these three selected variables.

II. Data

The variables are defined as:

- Y = Marriage Rate
- $X_1 = MenEmplymentRate$

X₂ = FemaleBachelorDegreeRate

 $X_3 = CohabitationRateOfUnmarried$

The resulting regression model with all explanatory variables is:

 $\mathrm{Y} = \alpha + \beta_1 \: \mathrm{X}_1 + \beta_2 \: \mathrm{X}_2 + \beta_3 \: \mathrm{X}_3$

The data is obtained as follows:

- Marriage Rate: Centers for Disease Control and Prevention,
 - o http://www.cdc.gov/nchs/nvss/marriage_divorce_tables.htm
- MenEmploymentRate: OECD Labor Force Statistics, LFS by sex and age indicators
 - o <u>http://stats.oecd.org/index.aspx?queryid=254#</u>
- FemaleBachelorDegreeRate: National Center for Education Statistics
 - o http://nces.ed.gov/programs/digest/d13/tables/dt13_104.20.asp
- CohabitationRateofUnmarried: Family Facts Organization
 - <u>http://www.familyfacts.org/charts/110/nearly-12-percent-of-couples-living-together-are-unmarried</u>

A summary of data is displayed in Appendix A.

III. Regression Analysis

3-Variable Regression

SUMMARY OUTPUT								
Rearession Statistics								
Multiple R	0.9754							
R Square	0.9514							
Adjusted R Square	0.9332							
Standard Error	0.1358							
Observations	12							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	df 3	SS 2.8891	MS 0.9630	F 52.2214	Significance F 0.0000			
Regression Residual	df 3 8	SS 2.8891 0.1475	MS 0.9630 0.0184	F 52.2214	Significance F 0.0000			
Regression Residual Total	df 3 8 11	SS 2.8891 0.1475 3.0367	MS 0.9630 0.0184	F 52.2214	Significance F 0.0000			
Regression Residual Total	df 3 8 11 Coefficients	\$\$ 2.8891 0.1475 3.0367 \$tandard Error	MS 0.9630 0.0184 t Stat	F 52.2214 P-value	Significance F 0.0000 Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Regression Residual Total Intercept	df 3 8 11 <i>Coefficients</i> 2.5519	\$\$ 2.8891 0.1475 3.0367 \$tandard Error 7.5547	MS 0.9630 0.0184 t Stat 0.3378	F 52.2214 P-value 0.7442	Significance F 0.0000 Lower 95% -14.8693	Upper 95% 19.9731	Lower 95.0% -14.8693	Upper 95.0% 19.9731
Regression Residual Total Intercept MenEmplymentRate	df 3 8 11 Coefficients 2.5519 0.1143	\$\$ 2.8891 0.1475 3.0367 \$tandard Error 7.5547 0.0739	MS 0.9630 0.0184 t Stat 0.3378 1.5467	F 52.2214 P-value 0.7442 0.1605	Significance F 0.0000 Lower 95% -14.8693 -0.0561	Upper 95% 19.9731 0.2846	<i>Lower 95.0%</i> -14.8693 -0.0561	Upper 95.0% 19.9731 0.2846
Regression Residual Total Intercept MenEmplymentRate FemaleBachelorDegreeRate	df 3 8 11 <i>Coefficients</i> 2.5519 0.1143 -0.1259	\$\$ 2.8891 0.1475 3.0367 \$ standard Error 7.5547 0.0739 0.0996	MS 0.9630 0.0184 <u>t Stat</u> 0.3378 1.5467 -1.2646	F 52.2214 P-value 0.7442 0.1605 0.2416	Significance F 0.0000 Lower 95% -14.8693 -0.0561 -0.3556	Upper 95% 19.9731 0.2846 0.1037	<i>Lower 95.0%</i> -14.8693 -0.0561 -0.3556	Upper 95.0% 19.9731 0.2846 0.1037

The R^2 with all explanatory variables in the model is 0.9514 and adjusted R^2 is slightly lower at 0.9332, indicating that 93.32% of the variance in the marriage rate can be explained by the 3 variables in the model. The result shows that MenEmploymentRate is positively correlated with marriage rate, while FemaleBachelorDegreeRate and CohabitationOfUnmarried are negatively correlated with marriage rate. Some study has shown that more women in America are choosing to live with men first without marriage, indicating a higher cohabitation rate might be a factor negatively impacting marriage rate. However it's high P-value suggests no predictive power. The variable will be excluded in the next analysis.

2-Variable Regression

SUMMARY OUTPUT								
Regression Statistics	5							
Multiple R	0.9751							
R Square	0.9509							
Adjusted R Square	0.9399							
Standard Error	0.1288							
Observations	12							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	2.8874	1.4437	87.0651	0.0000			
Residual	9	0.1492	0.0166					
Total	11	3.0367						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	2.9365	7.0626	0.4158	0.6873	-13.0403	18.9132	-13.0403	18.9132
MenEmplymentRate	0.1165	0.0697	1.6703	0.1292	-0.0413	0.2742	-0.0413	0.2742
FemaleBachelorDegreeRate	-0.1526	0.0447	-3.4117	0.0077	-0.2538	-0.0514	-0.2538	-0.0514

In the 2-variable model, the R^2 has slightly decreased, however the adjusted R^2 has slightly increased. In addition, there is improvement in F and standard error indicator. F has increased significantly from 52.2214 to 87.0651 and standard error has decreased from 0.1358 to 0.1288. Thus the 2-variable model is better than 3-variable model.

The P-value for MenEmploymentRate appears to be higher than 5% at 12.92%, indicating the variable is not so significant in t-Stat. The variable MenEmploymentRate fall out of significance at the 95% level and hence will be removed in the next analysis.

1-Variable Regression

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.9673							
R Square	0.9356							
Adjusted R Square	0.9292							
Standard Error	0.1398							
Observations	12							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	2.8412	2.8412	145.3277	0.0000			
Residual	10	0.1955	0.0196					
Total	11	3.0367						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	14.6971	0.5998	24.5052	0.00000000	13.3608	16.0335	13.3608	16.0335
FemaleBachelorDegreeRate	-0.2217	0.0184	-12.0552	0.0000028	-0.2627	-0.1808	-0.2627	-0.1808

It is noticed that the adjusted R^2 has decreased from 0.9399 to 0.9292, and standard error has increased slightly from 0.1288 to 0.1398. This means that the model is slightly worse. However the F value, which indicates the

ratio of explained variance to unexplained variance, has been increased significantly from 87.0651 to 145.3277 and the variable is statically significant at the 95% level, with a P-value close to zero.

IV. Conclusion

In the 1-variable model, adjusted R^2 is 0.9292 which means about 92.92% of the variation in the response variable can be explained by FemaleBachelrDegreeRate. In other words, the predictive ability for this variable is well sufficient in that there exists only about 7% of the variation in the response cannot be explained. Although the 2-variable model seems to be a slightly better one based on the slightly higher adjusted R^2 value, the significant level of the variables and number of variables should be taken into consideration when selecting a final model. The 1-variable model is preferred over all models, since the model is a good fit with a high adjusted R^2 less variables and the significant level of the variable being above 95%.

The regression model is Y =14.6971 - $0.2217X_2$

Y = Marriage Rate $X_2 =$ FemaleBachelorDegreeRate

Appendix A - Summary of data

	Υ	X1	X ₂	X ₃
	Marriage			
	Rate	MenEmploymentRate	FemaleBachelorDegreeRate	CohabitationRateOfUnmarried
	(Rate per			
	1,000 total	(Men 15to64 Labor force	(Female Bachelor's or higher	(Cohabiting couples as a % of all
Year	population)	participation rate)	degree attainment rate)	coresidential couples)
2000	8.2	83.9	30.1	6.5
2001	8.2	83.4	30.1	6.8
2002	8	83	30.1	6.9
2003	7.7	82.2	30.9	7.5
2004	7.8	81.9	30.9	7.5
2005	7.6	81.8	32.2	7.8
2006	7.5	81.9	31.6	7.9
2007	7.3	81.7	33	9.9
2008	7.1	81.4	34.9	10.5
2009	6.8	80.4	34.8	10.1
2010	6.8	79.6	35.7	11.4
2011	6.8	78.9	36.1	11.6

Y- Centers for Disease Control and Prevention, http://www.cdc.gov/nchs/nvss/marriage_divorce_tables.htm

X1 - OECD Labor Force Statistics LFS by sex and age - indicators, http://stats.oecd.org/index.aspx?queryid=254#

X₂ - National Center for Education Statistics, http://nces.ed.gov/programs/digest/d13/tables/dt13_104.20.asp

X₃- Family Facts Organization, http://www.familyfacts.org/charts/110/nearly-12-percent-of-couples-living-together-are-unmarried