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Introduction

Actuaries are commonly responsible for estimating loss trend when deriving projected loss 
estimates for a specified future period.  Trends are typically estimated by fitting an exponential 
curve to the data.  This method offers convenience but it is not terribly accurate when the 
underlying loss trend is seasonal, as is the case with the data examined in the time series 
analysis outlined below. This project will focus on one component of the loss trend, claim 
frequency, and compare how well a model fits unadjusted and seasonally adjusted times series.

Data Evaluation

The data to be used in this project include 40 quarterly evaluations of reported claims from 
January 2004 to December 2013.  The claim counts at each evaluation are divided by the 
number of exposures earned in that period to yield claim frequencies free of distortions caused 
by changes in the amount of business written from one quarter to the next.  Figure 1 contains a 
time series plot of claim frequencies by quarter.  The solid line represents unadjusted 
observations while seasonally adjusted frequencies follow the dashed line.

Several observations can be made using this plot with the most obvious being a strong 
seasonal pattern in the unadjusted claim frequency.  The seasonally adjusted data exhibit no 
such pattern.  However, both time series possess upward trends relative to the horizontal line 
representing the average claim frequency over the 10 year period.  Trend of this nature is 
indicative of nonstationary time series and will need to be removed prior to specifying the 
appropriate time series model.

Model Specification

When deciding which time series models to consider, it is necessary to examine the sample 
autocorrelation and sample partial autocorrelation functions, abbreviated ACF and PACF, 
respectively.  A plot of the ACF for unadjusted claim frequencies is shown in Figure 2 and clearly 
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exhibits an oscillating seasonal pattern with a period of 4 quarters.  This graph also provides 
additional evidence that the time series is nonstationary since the autocorrelations are 
decreasing slowly as the lag increases.

The autocorrelation pattern in Figure 3 lacks oscillation as it was constructed using seasonally 
adjusted claim frequencies.  The plot also supports the conclusion that trend is present as it too 
fails to decrease rapidly.

A review of the PACF plots for unadjusted and seasonally adjusted claim frequencies can be 
found in Figures 4 and 5, respectively.  In both cases, there are two statistically significant 
values that would indicate one should incorporate between 2 and 9 autoregressive parameters 

�2



James Pilarski
Time Series Analysis Student Project
Spring 2012 Exam Semester
in the time series models.  This seems unreasonable and is likely to change once they are 
made stationary by removing the trend.

It is possible to remove the trends from a time series through differencing.  Both the unadjusted 
and seasonally adjusted data are nonstationary and were modified using the first difference with 
a lag of 1.  These results are displayed in Figure 6 where both series are no longer exhibiting 
upward trends.  A seasonal pattern appears to persist in the unadjusted observations.
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Once again it will be useful to examine the ACF plots of these time series.  Figure 7 displays the 
unadjusted data detrended through differencing.  The seasonal pattern remains and will require 
additional attention.

The seasonally adjusted ACF plot in Figure 8 shows much more encouraging results since the 
autocorrelation decreases fairly rapidly after the first lag.  There is an obvious exception at lag 9  
which could indicate a seasonal MA(1) parameter is needed or it may simply be a random 
fluctuation.
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The corresponding graphs of the PACF are shown below in Figures 9 and 10 where they still 
exhibit some seasonality.  More specifically, the appropriate models for the seasonally adjusted 
time series are AR(1) or AR(2) due to the large partial autocorrelations at lags 1 and 2.  A spike 
in the PACF plot at lag 8 could suggest a seasonal AR(1) should added to the model if this is not 
simply the result of randomness.
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Returning to unadjusted observations, the quarterly pattern can be removed from the time 
series through seasonal differencing with a lag of 4.  Figure 11 shows the effect of this 
modification on the data.

The ACF plot in Figure 12 now contains a statistically significant autocorrelation at lags 1, 3, and 
9 with nearly significant values at lags 4 and 8.  This pattern seems to indicate the time series 
model should include both nonseasonal and seasonal MA(1) parameters.
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Figure 13 displays a PACF plot that seems to suggest the a nonseasonal AR(2) parameter 
should be added to the model as well as a seasonal AR(1) parameter.

When the above observations are pulled together, the unadjusted time series will be fit to an 
ARIMA(2,1,1)x(1,1,1)4 model while an ARIMA(2,1,1)x(1,0,1)4 model will be specified for the 
seasonally adjusted data.  It is interesting to note the only difference between these models is 
the lack of seasonal differencing in the one applied to the seasonally adjusted data.
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Model Fitting

The models selected above were fit using maximum likelihood estimation.  Table 1 contains the 
fitted parameters for the unadjusted time series while Table 2 displays those for the seasonally 
adjusted data.  The initial fits revealed the seasonal AR(1) parameter is not statistically different 
from zero.  Therefore, this parameter was removed from the models in order to avoid overfitting.

Tables 3 and 4 below show the results of refitting the models.  Removing the seasonal AR(1) 
parameter decreased the AIC and BIC for both models possibly indicating better fits.  It is worth 
noting the seasonal MA(1) parameter in the seasonally adjusted model is also not statistically 
different from zero and its removal may further improve the fit.

As expected, the AIC and BIC decreased and the remaining parameters did not change much 
relative to their standard errors.  These statistics can be found in Table 5 below.  This result is 
not surprising in light of the seasonal adjustment made to the underlying data.  One may 
conclude the significant values identified at the later lags in the ACF and PACF plots above are 
likely the result of random fluctuation.  Now that both models have been fit, it is necessary to 
assess the quality of that fit using a series of diagnostics.
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Table 1: Unadjusted Time Series

Series: freq 
ARIMA(2,1,1)(1,1,1)[4]                    

Coefficients:
       ar1        ar2        ma1      sar1      sma1
     -0.3896 -0.2821 -0.6856  0.1513 -0.9999
s.e. 0.2347  0.2212  0.2471  0.1919  0.2475
sigma^2 estimated as 0.0002221
log likelihood=92.58
AIC=-173.16   AICc=-170.16   BIC=-163.83

Table 2: Seasonally Adjusted Time Series

Series: freq.adj 
ARIMA(2,1,1)(1,0,1)[4]                    

Coefficients:
       ar1        ar2        ma1      sar1      sma1
     -0.4476 -0.3236 -0.5046 -0.3595  0.5077
s.e. 0.2548  0.2121  0.2381  0.7492  0.6903
sigma^2 estimated as 0.0002182:  log 
likelihood=108.4
AIC=-204.8   AICc=-202.18   BIC=-194.82

Table 3: Unadjusted Time Series

Series: freq 
ARIMA(2,1,1)(0,1,1)[4]                    

Coefficients:
        ar1       ar2        ma1      sma1
      -0.3742 -0.2796 -0.6792 -0.9999
s.e.  0.2133  0.2081  0.2048  0.4399
sigma^2 estimated as 0.0002194
log likelihood=92.26
AIC=-174.52   AICc=-172.45   BIC=-166.74

Table 4: Seasonally Adjusted Time Series

Series: freq.adj 
ARIMA(2,1,1)(0,0,1)[4]                    

Coefficients:
        ar1       ar2        ma1      sma1
      -0.4703 -0.3343 -0.4979 0.1561
s.e.  0.2519  0.2128  0.2410 0.1947
sigma^2 estimated as 0.0002197
log likelihood=108.28
AIC=-206.55   AICc=-204.73   BIC=-198.23
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Model Diagnostics

Many diagnostic tests of time series models 
examine the residuals that result from the 
difference between actual and fitted 
observations.  The residuals of well fit models 
should mirror a normally distributed white 
noise process.  A plot of the residuals should 
therefore appear as a patternless scatter of 
points.  The residuals from the unadjusted 
frequencies can be observed in Figure 14 
where they appear to have an upward trend.  
In Figure 15, one can see the model fit to the 
seasonally adjusted data produces residuals that appear much more similar to white noise.
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Table 5: Seasonally Adjusted Time Series

Series: freq.adj 
ARIMA(2,1,1)                    

Coefficients:
       ar1        ar2        ma1
      -0.4207 -0.3032 -0.5171
s.e.  0.2203  0.1948  0.1945
sigma^2 estimated as 0.0002239
log likelihood=107.98
AIC=-207.96   AICc=-206.78   BIC=-201.31
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The extent to which the residuals follow a normal distribution can be evaluated by viewing a 
histogram of the residuals and quantile-quantile plots.  Figures 16 and 17 show histograms that  
are similar to the shape of a normal probability distribution function but perhaps not enough.

The quantile-quantile residual plots from the two models are shown in Figures 18 and 19.  
Neither model produces residuals that follow a normal distribution perfectly since plotted points 
do not closely follow the diagonal lines through the graphs.  That said, the seasonally adjusted 
data produce residuals that are slightly more normal.
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An additional diagnostic of model fit examines the independence of the residuals.  Calculating 
the autocorrelation of residuals and plotting the results can reveal dependencies in the error 
terms.  Figure 20 contains the ACF plot of residuals from the unadjusted time series.  With the 
exception of lag 9, there are no statistically significant correlations among the error terms for this 
model.

The residuals produced by the model fit to the seasonally adjusted claim frequencies also show 
a significant autocorrelation at lag 9 as one can see in Figure 21.  Again, this may be the result 
of random fluctuation.

�11



James Pilarski
Time Series Analysis Student Project
Spring 2012 Exam Semester

Further examination of the independence of residuals can be performed by viewing PACF plots.  
These can be seen in Figures 22 and 23 which do not contain any statistically significant values 
but lag 9 is still the largest value in both plots.

A final assessment of correlation among residuals can be made using the Box-Ljung test which 
examines the magnitude of residual correlations for more than one lag at a time.  Tables 6 and 7 
show the calculated statistics and the corresponding p-values for each set of observations.  
Based on these figures, the null hypothesis that states the residuals are correlated would be 
rejected a significance of 20% but not 15% when one tests the unadjusted observations, not a 
terribly convincing case.  The null hypothesis for the seasonally adjusted time series would be 
rejected at 10% but not 5%, a much better result.
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The analysis outlined above would lead one to conclude that the fit of the ARIMA(2,1,1) with 
seasonally adjusted data is better than that of ARIMA(2,1,1)x(0,1,1)4 model for the unadjusted 
time series.  Additional visual inspection can help verify this conclusion.

Actual versus Fitted

Now that the time series models have been specified, fitted, and examined for quality, one can 
plot the actual versus fitted observations.  Figure 24 shows this plot for the unadjusted claim 
frequency and the fit appears to be rather good.

The same cannot be said for the seasonally adjusted fit in Figure 25.  This is an unexpected 
result given the tests of fit performed up to this point in the analysis.
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Table 6: Unadjusted Time Series

Box-Ljung test
data:  residuals(fit02)
X-squared = 8.8013, df = 6,
p-value = 0.1851

Table 7: Seasonally Adjusted Time Series

Box-Ljung test
data:  residuals(fit03.adj)
X-squared = 12.9624, df = 7,
p-value = 0.07303
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Conclusion

The visually poor fit of the model for seasonally adjusted claim frequency could be the result of 
many factors.  One possibility is the statistically significant residual autocorrelations at lag 9 
represent a seasonal factor that was not accounted for properly.  The seasonal pattern in these 
data seems to shift slightly at certain times and a smoothing adjustment may improve the fit.  
Whatever the case, it is clear that fitting seasonal models is rather difficult and must require 
techniques that are beyond to scope of the lessons covered in this course.
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