Module 8: Linear least squares regression practice problems

Ordinary least squares estimators from intermediate values

(The attached PDF file has better formatting.)
** Exercise 1.1: Ordinary Least Squares Estimates
We have 4 pairs of points

i	X_{i}	Y_{i}
1	0.5	1.5
2	1.0	2.5
3	1.5	3.5
4	2.0	5.5

Note that $\sum X_{i}=5.0, \sum Y_{i}=13.0, \sum X_{i} Y_{i}=19.5$, and $\sum X_{i}^{2}=7.5$
A. What is $\sum\left(x_{i}-\bar{x}\right)^{2}$?
B. What is $\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$?
C. What is B , the ordinary least squares estimate of β ?
D. What is A , the ordinary least squares estimate of α ?

Part A: Derive $\sum x_{i}^{2}$ from $\sum X_{i}$ and $\sum X_{i}^{2}$ as

$$
\sum x_{i}^{2}=\sum X_{i}^{2}-\left(\sum X_{i}\right)^{2} / \mathrm{N}=7.5-5.0^{2} / 4=7.5-25 / 4=1.250
$$

Part B: Derive $\sum x_{i} y_{i}$ from $\sum X_{i}, \sum Y_{i}$, and $\sum X_{i} Y_{i}$.as

$$
\sum x_{i} y_{i}=\sum X_{i} Y_{i}-\sum X_{i} \times \sum Y_{i} / \mathrm{N}=19.5-5 \times 13 / 4=3.250
$$

Part C: $\mathrm{B}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=3.250 / 1.250=2.600$
Alternatively, we use the formula involving the expressions above:
$\mathrm{B}=\frac{\sum X_{i} Y_{i}-N \bar{X} \bar{Y}}{\sum X_{i}^{2}-N \bar{X}^{2}}=\frac{\sum X_{i} Y_{i}-\frac{\sum X_{i} \sum Y_{i}}{N}}{\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{N}}$
$=[19.5-4 \times 5 / 4 \times 13 / 4] /\left(7.5-4 \times(5 / 4)^{2}\right]=2.600$

Part D: $\mathrm{B}=2.600$, so $\mathrm{A}=\bar{Y}-\mathrm{B} \times \bar{X}=1 / 4 \times 13-2.6 \times 1 / 4 \times 5=0.000$.
Jacob: Could we also solve this problem by regressing the four y values on the four x values?
Rachel: This exercise is deliberately simple, so you can verity the computation using the intermediate values with a regression analysis (using Excel or R or any statistical package) of the four observations. Final exam problems may give just the intermediate values (not the raw observations), with an N or 100 or 200.

