Fox Module 10 variances correlations regression values practice problems

(The attached PDF file has better formatting.)

** Exercise 1.1: Variances, correlations, and regression output

A linear regression of Y on X from a bi-variate distribution with 100 observations has

- The sample variance of the observed X-values, or $\sigma^2(x)$, = 40.
- The sample variance of the observed Y-values, or $\sigma^2(y)$, = 60.
- The correlation of the observed X-values with the observed Y values is -50%.

Jacob: What does a bi-variate distribution mean?

Rachel: This linear regression is an observational study. Both X and Y are sampled from the population, so we compute the sample variance of each. The two random variables are correlated.

- A. What is TSS, the total sum of squares?
- B. What is the R² of the regression?
- C. What is RegSS, the regression sum of squares?
- D. What is RSS, the residual sum of squares?
- E. What is B, the ordinary least squares estimate of β ?
- F. What is S_E^2 (or s²), the least squares estimate of the variance of the error term σ_{ϵ}^2 ?
- G. What is the variance of B, the ordinary least squares estimate of β ?
- H. What is the standard error of B, the ordinary least squares estimate of β ?
- I. What is the *t* value to test the null hypothesis that $\beta = 0$?
- J. What is the *F* value to test the null hypothesis that $\beta = 0$?

Part A: The total sum of squares TSS is $\sigma^2(y) \times (n-1) = 60 \times (100 - 1) = 5,940$.

Part B: R^2 is the square of $\rho(x,y)$, the correlation between the explanatory variable and the response variable:

 $(-0.50)^2 = 0.25$

Part C: The regression sum of squares RegSS is the TSS times the R²:

5,940 × 0.25 = 1,485

Part D: The residual sum of squares RSS is TSS - RegSS:

Part E: B, the ordinary least squares estimate of β , is $\sum (x_i - \overline{x})(y_i - \overline{y}) / \sum (x_i - \overline{x})^2 =$

covariance(x,y) / variance(x) =

$$\rho(x,y) \times (\sigma^2(x) \times \sigma^2(y))^{0.5} / variance(x) =$$

$$-0.50 \times (40 \times 60)^{0.5} / 40 = -0.612372$$

Part F: S_E² (or s²), the least squares estimate of the variance of the error term σ_{ϵ}^{2} , is RSS / (n - k - 1) =

4,455/(100 - 1 - 1) = 45.459184

Part G: The variance of B, the ordinary least squares estimate of β , is $S_E^2 / \sum (x_i - \overline{x})^2 =$

$$S_{E}^{2} / (\sigma^{2}(x) \times (100 - 1)) =$$

Part H: The standard error of B, the ordinary least squares estimate of β , is the square root of the variance:

$$0.01147959^{0.5} = 0.107126$$

Part I: The t value to test the null hypothesis that $\beta = 0$ is B / SE(B) =

Part H: The *F* value to test the null hypothesis that $\beta = 0$ is the square of the *t* value

 $(-5.715486)^2 = 32.6668$

We can also compute the F value as (RegSS / 1) ÷ (RSS / (100 - k - 1) =

[This example uses 6+ decimal places for some computations, so the two methods of computing the F-Ratio get the same figure. Final exam problems do not require 6 decimal place accuracy.]